(2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转90度后得2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:29:53
(2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转90度后得2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转
xTnP/r V 4JP!;B MH!@SAkVBP)TzΙs^]N ջ085f":SPAriHnPe -#~Cd!1Ԕ8oFxNөi4A B !'hueJ <[חJ{ /ռfke+FYsJ$HlD7 &ƴĄ}Z\86 c8rUha><*ٸ D

(2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转90度后得2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转
(2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转90度后得
2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转90度后得到三角形DOC,抛物线y=ax^2+bx+c经过A,B,C三点. (1)填空:A(____,____),B(_____,_____),C(_____,_____): (2)求抛物线的涵数关系式: (3)E为抛物线的顶点,在线段DE上是否存在点P,使得以C,D,P为顶点的三角形与三角形DOC相似?若存在,请求出点P的坐标:若不存在,请说明理由.请给出标准答案.

(2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转90度后得2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转
做此类题,你先画图,然后就一目了然.A(-1,0) B(0,-3) C(3,0) 带入这三个点就能求出抛物线的函数关系式了,a=1,b=-2,c=-3 存在p点,且有俩个这样的点p(√10/10,-3√10/10-1)p点横坐标为10分之根号10,觉得好就采纳吧

(1)A(-1,0) B(0,-3) C(3,0)
(2)y=x^2-2x-3
(3)存在这样的点P,使得三角形CDP与三角形DOC相似。p(1/3,-2)
做这个小题时,要注意DC和DE本身就是垂直的,知道这一点,这个小问就很容易解答了。

(2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转90度后得2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转 (2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转90度后2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转9 (2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转90度后得2010年漳州市质检)如图,直线y=-3x-3分别交x轴,y轴于A,B两点,三角形AOB绕点O按逆时针方向旋转 如图,已知双曲线y=(k-3)/x与过原点的直线相交于A,B两点,第一象限内的M(点M在A的一方)是双曲线y=(k-3)/x一(2012•南安市质检)如图,已知双曲线y=(k-3)/x(k为常数)与过原点的直线l相交于A、B 2010漳州市中考历史答案 如图直线y=kx【k 圆心在抛物线x2=2y上,与直线2x+2y+3=0相切的圆中面积最小圆方程?(石家庄质检) 2010年泉州市质检卷各科答案 求2010宁德市质检英语答案如题.. 如图 设直线y=kx(k 如图,直线PA:y=kx-2k(k 如图,直线PA:y=kx-2k(k 如图,直线y=x+b(b≠0). 如图,点A的坐标是(0,4),点P在直线y=x上运动.求直线y=3x+4关于直线y=x对称的直线方程 )如图,已知直线y=(1-k)x+k(k 2010晋江市数学质检答案,如题.我要正确的答案,解答题从22题开始最好有答题过程.是2010初三年晋江市数学质检的. 2010晋江市质检英语 (2010福州市质检)在平面直角坐标系xoy中,抛物线y=-x^2+bx+c与x轴交于A(-1,0),B(-3,0),两点,与y轴2010福州市质检)在平面直角坐标系xoy中,抛物线y=-x^2+bx+c与x轴交于A(-1,0),B(-3,0),两点,与y轴交