逆矩阵的求法设A是数域P上的n级可逆矩阵,证明:存在数域P上的多项式g(x),使得A的逆矩阵=g(A).
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:38:07
xŐN@_GD&{!zX AJĶxwvS_)g=c7+\sd~p뜽)ll9aÌWCj߇C̫8`hBku<ԙo v"t|eR3lIAʺژ}ki([0WKxnQKݗz&;A7LG%.#zjhn%UVp-3b@HńC^'(Q9уtcNXÃj1.:N
逆矩阵的求法设A是数域P上的n级可逆矩阵,证明:存在数域P上的多项式g(x),使得A的逆矩阵=g(A).
逆矩阵的求法
设A是数域P上的n级可逆矩阵,证明:存在数域P上的多项式g(x),使得A的逆矩阵=g(A).
逆矩阵的求法设A是数域P上的n级可逆矩阵,证明:存在数域P上的多项式g(x),使得A的逆矩阵=g(A).
使用A的特征多项式构造即可
用逆矩阵的定义:如果两个矩阵乘积为单位阵,那么这两个矩阵互逆。即A(A^-1)=E (其中我用A^-1表示A的逆 ) 这题可以把已知条件改写: A^3-2A=
逆矩阵的求法设A是数域P上的n级可逆矩阵,证明:存在数域P上的多项式g(x),使得A的逆矩阵=g(A).
设A 是数域F上的n阶方阵,并且有n个特征值.证明,存在数域F上的可逆矩阵P使得P^-1AP为上三角矩阵.
设N阶矩阵A可逆,A*为A的伴随矩阵,试证A*也可逆,且(A*)逆矩阵=1/[A]乘以A 万分感激
设A为n阶可逆矩阵,P为n阶矩阵,A+P,A-P,均可逆,证X=(A+P)(A-P)-1,Y=(A+P)-1(A-P)为XAY=A的解
V 是数域F上的n阶矩阵全体,并任选V的一组基,计算σ与τ 在该组基下的矩阵.设V 是数域F上的n阶矩阵全体,A是V 中一个固定元素,P是V 中一个固定的可逆矩阵,σ是左乘A的映射,τ 是左乘P逆右乘P的
设分块矩阵D=(C A B 0),其中A为n阶可逆矩阵,B为m阶可逆矩阵.求|D|以及D的逆
设A是n级正交矩阵,P,Q是n级可逆实矩阵,则A.PAQ是正交矩阵;B.P的转置AP是正交矩阵;C.2A是正交矩阵D.A的伴随矩阵是正交矩阵.
已知A为n阶可逆矩阵,求A的伴随矩阵的逆矩阵
.若有n阶可逆矩阵A,则 A*可逆,A* 的逆矩阵为
逆矩阵的求法
一道大学线性代数可逆矩阵题设A为m阶可逆矩阵,B为n阶可逆矩阵,C为n x m 矩阵.证明:分块矩阵D=(O AB C)是可逆矩阵,并求D的逆矩阵及伴随矩阵
设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,使得A=P(Er O)Q(O O)是一个大括号
设A*为n阶矩阵A的伴随矩阵,且A*可逆,证明:A也可逆
设A是n阶实对称矩阵 P是n阶可逆矩阵 ,已知n维列向量β是属于特征值λ的特征限量,则矩阵(P^( -1) AP)倒置的上面问题只显示了一半设A是n阶实对称矩阵 P是n阶可逆矩阵 已知n维列向量β是属于特征
证明:设A是n阶可逆矩阵,证明:(1)A的伴随矩阵的逆矩阵=A逆矩阵的伴随矩阵(2) (A*)*=|A|的n-2乘以A
设n阶方阵A,B的乘积AB为可逆矩阵,证明A,B都是可逆矩阵
求可逆矩阵P使PA为矩阵A的行最简形矩阵设矩阵A=1 2 32 3 43 4 5求一个可逆阵P,使PA为矩阵A的行最简形矩阵
线性代数初学者:分块矩阵的伴随矩阵题目设n阶矩阵A和s阶矩阵B可逆,求 矩阵 A O ^-1 ( ) C B 不怎么会打,就是求它的逆矩阵