定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,都有f(a+b)=f(a)*f(b)且f(0)=1证对任意的x∈R,恒有f(x)>0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:44:01
x){n֓Oz{MPi~OG=: sӽMߦS<1Ov~4%qCcң {MNdh V/7"S6Y$PltUDXO }gdD
$[
Hi mӴMӨLЭ 4D=XM<[x}K!AX/.H̳E
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,都有f(a+b)=f(a)*f(b)且f(0)=1证对任意的x∈R,恒有f(x)>0
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,都有
f(a+b)=f(a)*f(b)且f(0)=1
证对任意的x∈R,恒有f(x)>0
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,都有f(a+b)=f(a)*f(b)且f(0)=1证对任意的x∈R,恒有f(x)>0
证:
令a=x b=-x
f(a+b)=f(x)f(-x)=f(0)=1
f(x)f(-x)=1
f(x)与f(-x)同号.
x>0时,f(x)>1>0,因此x0,又已知f(0)=1>0
因此对任意的x∈R,恒有f(x)>0
定义在R上的函数f(x),对任意x,y∈R,豆油:f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,判断f(x)的奇偶性
已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0(1):f(0)=1(2):判断函数的奇偶性
定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)是奇函数
定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)为偶函数
已知定义在R上的函数y=f(x),对任意x,y∈R,f(x)≠0,有f(x+y)=f(x)f(y)1.求证f(x)>0 2.求证f(x-y)=f(x)/f(y)3.若f(x)为R上的严格单调函数,且f(1)=1/2,解函数4f(5x)=f(3x)
f(x)是定义于R上的函数,满足两个条件f(x+y)=f(x)f(1-y)+f(1-x)f(y).)f(x)是定义于R上的函数,满足两个条件:(1)f(x+y)=f(x)f(1-y)+f(1-x)f(y) f(x)在[0,1]上单调递增; 问:(1)f(1)=1; (2)f(x)的奇偶性 (3)f(
已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y) 求f(0)已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)(1) 求f(0);并写出适合条件的函数f(x)的
一题高一的数学题目.定义在R上的函数f(x)对一切实数x,y满足f(x)≠0,且f(x+y)=f(x)f(y),已知函数f(x)在(-∞,0)上的值域为(1,+∞),求函数f(x)在R上的值域.
已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0 ⑴判断函数奇偶性已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0⑴判断函数
f(x)是定义于R上的函数,满足两个条件f(x+y)=f(x)f(1-y)+f(1-x)f(y)...f(x)是定义于R上的函数,满足两个条件:(1)f(x+y)=f(x)f(1-y)+f(1-x)f(y)(2)f(x)在[0,1]上单调递增;问:(1)f(1)=1;(2)f(x)的奇偶性(3
设F(x)是定义在R上的函数对任意X,Y属于R,恒有F(X+Y)=f(X)+F(Y) (1)求F(0)的值 (2)求证F(x)为奇函数设F(x)是定义在R上的函数对任意X,Y属于R,恒有F(X+Y)=f(X)+F(Y) (1)求F(0)的值 (2)求证F(x)为奇
定义在R上的函数f(x)对一切实数x,y满足:f(x)≠0,且f(x+y)=f(x)*f(y),且当x1求证:f(x)在x∈R上是减函数
f(x)是定义在R上的函数,对任意x,y∈R,f(x+y)+f(x-y)=2f(x)f(y)恒成立,且f(0)≠0求f(x)的奇偶性
定义在实数集R上的函数f(x),对于任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0.1 判断f(x)的奇偶性.
定义在R上的函数f(x)满足f(x+y)=f(x)-f(y),那么此函数的奇偶性是( ). 拜托各位了!
高一上学期关于函数的数学题:定义在R上的函数f(x),对任意的函数,x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y) ,且f(0)≠0,.(1) 求证:f(0)=1 (2)求证:f(x)是偶函数.(要求:解题思路清晰)
已知定义在R上的函数f(x)满足:(1)对任意的x,y属于R,都有f(xy)=f(x)+f(y);已知定义在R上的函数f(x)满足:(1)对任意的x,y属于R,都有f(xy)=f(x)+f(y);(2)当x>1是,f(x)>0.求证:(1)f(1)=0;(2)对任意的x属于R,都有f(1
已知定义在R上得函数f(x)满足f(xy)=f(x)+f(y).(1)求证f(1)=f(-1)=0