求积分∫∫(x^2+zx)dydz+(y^2+xy)dzdx+(z^2+yz)dxdy,其中积分沿曲面外侧,x^2+y^2=z^2求到=∫∫∫(z+x+y)dxdydz之后应该怎么办?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:29:07
求积分∫∫(x^2+zx)dydz+(y^2+xy)dzdx+(z^2+yz)dxdy,其中积分沿曲面外侧,x^2+y^2=z^2求到=∫∫∫(z+x+y)dxdydz之后应该怎么办?
x͑J1_% HDž3C%&ɪ ʴJ)R*Z*RA7Cdڮ &• Y$'|ι{ - 1b`T50A&`Go~xv

求积分∫∫(x^2+zx)dydz+(y^2+xy)dzdx+(z^2+yz)dxdy,其中积分沿曲面外侧,x^2+y^2=z^2求到=∫∫∫(z+x+y)dxdydz之后应该怎么办?
求积分∫∫(x^2+zx)dydz+(y^2+xy)dzdx+(z^2+yz)dxdy,其中积分沿曲面外侧,x^2+y^2=z^2
求到=∫∫∫(z+x+y)dxdydz之后应该怎么办?

求积分∫∫(x^2+zx)dydz+(y^2+xy)dzdx+(z^2+yz)dxdy,其中积分沿曲面外侧,x^2+y^2=z^2求到=∫∫∫(z+x+y)dxdydz之后应该怎么办?
这个锥面没有盖吗?
补上平面S:z = h,上侧
∫∫(Σ+S) (x² + zx)dydz + (y² + xy)dzdx + (z² + yz)dxdy
= ∫∫∫Ω [ (2x + z) + (2y + x) + (2z + y) ] dV
= 3∫∫∫Ω (x + y + z) dV、Ω为锥面x² + y² ≤ z² 和 z ≤ h
= 3∫∫∫Ω z dV、

求积分∫∫(x^2+zx)dydz+(y^2+xy)dzdx+(z^2+yz)dxdy,其中积分沿曲面外侧,x^2+y^2=z^2求到=∫∫∫(z+x+y)dxdydz之后应该怎么办? 利用高斯公式求曲面积分∫∫xy²dydz+yz²dzdx+zx²dxdy 其中Z为单位求面x²+y²+Z²=1的外侧 ∫∫(x^2-yz)dydz+(y^2-zx)dzdx+2zdxdy其中积分区域为z=1-√(x^2+y^2)其中(z>=0)的上侧 曲面积分 ∫∫(2x+z)dydz+zdxdy 积分区域:z=x^2+y^2(0 曲面积分和高斯公式求I=∫∫(z+2x)dydz+zdxdy,其中Σ是曲面z=x^2+y^2(0 设∑为曲面z=x^2+y^2(z≤1)的上侧,求曲面积分∫∫(x+z^2)dydz-zdxdy诉求 曲面积分∫∫(2x+3z)dydz-x(x*z+y)dzdx+(y2+2z)dxdy的全表面的外侧 关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥面z=√x^2+y^2介于0 两道简单的计算曲面积分(求帮助)1 计算曲面积分∫∫Σ x^3 dydz+(1-3x^2y)dzdx+2z dxdy,其中Σ为方程x^2+y^2=z(0≤z≤1)所确定的曲面的上侧2 计算曲面积分∫∫Σ (Z^2+x)dydz+z dxdy的值,其中Σ为旋转抛 用高斯公式计算曲面积分∮xy^2dydz+yz^2dzdx+zx^2dxdy,其中∑为球面x^2+y^2+z^2=R^2的外侧.∮这符号下面还有个小写的∑ 求曲面积分,其中S为椭球面的外侧..题目可能不太清楚...所有的指数项都是2xy^2dydz+yz^2dxdz+zx^2dxdyS为椭球面x^2/a^2+y^2/b^2+z^2/c^2=1 的外侧手机像素拙计= =求各位大大见谅... ∫∫(x^3+z^2)dydz+(y^3+x^2)dzdx+(z^3+y^2)dxdy 积分区域为z=√1-x^2-y^2 的上侧给积分区域加个下边,用奥高公式 利用高斯公式求曲面积分∮xy^2dydz+yz^2dzdx+zx^2dxdy,其中∑为球面x^2+y^2+z^2=R^2的外侧.参考答案是4πR^5/5.但是我怎么算都是2πR^5/5本人分数当场结算.我的采纳率100%令P=xy²,Q=yz²,R=zx²∵αP/α 求第二类曲面积分,有高斯公式方法,I=∫∫(x+cosy)dydz+(y+cosz)dzdx+(z+cosx)dxdy,其中曲面为x+y+z=π在第一卦限,取上侧 曲面积分 ∫∫(y^2-x)dydz+(z^2-y)dzdx+(x^2-z)dxdy,∑为Z=1-x^2-y^2位于侧面上方的上侧 求I=∫∫ xz^2dydz+(y*x^2-z^3)dzdx+(2xy+z*y^2)dxdy /x^2+y^2+z^2,积分曲面为上半球面Z=√a^2-x^2-y^2答案是2πa^3/5,求过程 求I=∫∫ xz^2dydz+(y*x^2-z^3)dzdx+(2xy+z*y^2)dxdy /x^2+y^2+z^2,积分曲面为上半球面Z=√a^2-x^2-y^2答案是2πa^3/5 计算(二重积分)xy^2dydz+yz^2dzdx+zx^2dxdy 范围为上半球面z=根号1-x^2-y^2的上侧