已知数列{an}的前n项和sn=n^2-8n,求数列{|an|}的通向公式已知数列{an}的前n项和sn=n^2-8n,求(1)数列{|an|}的通向公式(2)数列{|an|}的前n项和pn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 17:24:07
xՓn0_\s}Iq_d("):iA`Uӄ@д&pÛT^Hpc9??s8n|NFw7H@]\\`wvGo9doy%֯{gS_
Cm4ݶ^@w9{/:?`u·>xa]Oz`bRPǥ=ڗpp phM6,uD1ӽdeD;
ȆU7v\A~ޕlko0Z,wUje%7攺rUlA!kV&găɞ7E~-v:/ϧWGFI4Ht4:w5kcz2@=2X1xG>^TKK-ħd${6zDP5
d H=fBd)
e~2h?bCmӔU}w5
已知数列{an}的前n项和sn=n^2-8n,求数列{|an|}的通向公式已知数列{an}的前n项和sn=n^2-8n,求(1)数列{|an|}的通向公式(2)数列{|an|}的前n项和pn
已知数列{an}的前n项和sn=n^2-8n,求数列{|an|}的通向公式
已知数列{an}的前n项和sn=n^2-8n,求
(1)数列{|an|}的通向公式
(2)数列{|an|}的前n项和pn
已知数列{an}的前n项和sn=n^2-8n,求数列{|an|}的通向公式已知数列{an}的前n项和sn=n^2-8n,求(1)数列{|an|}的通向公式(2)数列{|an|}的前n项和pn
由题意:a1=1^2-8×1=-7
由条件sn=n^2-8n…①
s(n-1)=(n-1)^2-8(n-1)…②
①-②得:sn-s(n-1)=2n-9
由an=sn-s(n-1)
故an=2n-9,此式适用于a1
从而{an}的通项公式为2n-9
n为整数,n≤4时2n-9<0,n≥5时2n-9>0
从而{|an|}的通项公式
n≤4时,|an|=9-2n
n≥5时,|an|=2n-9;
(2)
当n≤4时
各项是负数所以去掉绝对值要加个负号
所以 pn=8n-n^2(n≤4)
当n≥5时,
因为s4=a1+a2+a3+a4=|-7|+|-5|+|-3|+|-1|=16
故pn=s4+[1+3+...+(2n-9)]=(1+2n-9)(n-4)/2+16=n^2-8n+32
故n≤4时,pn=8n-n^2
n≥5时,pn=n^2-8n+32
(1)n<=4
|an|=9-2n
n>4
|an|=2n-9
已知数列{an}的前n项和为Sn,an+Sn=2,(n
已知数列的前n项和Sn=n²+2n 求an
已知数列{an}的前n项和Sn=n2+2n,则an=?
已知数列{an}的前n项和sn=3+2^n,则an等于?
已知数列{an}的前n项和为Sn=-n2-2n,求an
已知数列(an)的前n项和Sn=3+2^n,求an
已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn
已知数列an的前n项和sn满足sn=n的平方+2n-1求an
已知数列AN的前N项和SN,SN=2N^2+3n+2,求an
已知数列an的前n项和为Sn,且An=3^n+2n,则Sn等于
已知数列{An}的前N项和Sn=12n-N^2求数列{|An|}的前n项和Tn 并求Sn的最大值
已知数列{an}的前n项和sn=10n-n^2(n属于N*),求数列{an绝对值}的前n项和Bn
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
1.已知数列an的前n项和为Sn,且Sn=2^n,求通项an;2.已知数列an的前n项和为Sn,且Sn=n^2+3n,求通项an;
已知数列{an}的前n项和为Sn=n^2-3n,求证:数列{an}是等差数列
已知数列{An}的前n项和Sn=3n²-2n,证明数列{An}为等差数列
已知数列{an}满足an=2n/3^n,求此数列的前n项和sn
已知数列an的前n项和为sn 若sn=2n-an,求an