已知a^2+b^2+c^2=1,x^2+y^2+c^2=9,求ax+by+cz的最大值答案上说最大值是3

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 19:56:29
已知a^2+b^2+c^2=1,x^2+y^2+c^2=9,求ax+by+cz的最大值答案上说最大值是3
xPJ@3mM`&H EU,]DERŅTAE3w$lpsϽ8}}tz| cIԍCR/f< OD\lV<~iabo[R6РAB1@oFX҉6 yH:5ՂϬ,,h,WТJ%vE:W!] ]L^%Osxa}'p3X58~56J`sd&&!&}o1{?Bk

已知a^2+b^2+c^2=1,x^2+y^2+c^2=9,求ax+by+cz的最大值答案上说最大值是3
已知a^2+b^2+c^2=1,x^2+y^2+c^2=9,求ax+by+cz的最大值
答案上说最大值是3

已知a^2+b^2+c^2=1,x^2+y^2+c^2=9,求ax+by+cz的最大值答案上说最大值是3
(a^2+b^2+c^2)+2m(ax+by+cz)+m^2(x^2+y^2+c^2)
=(a+mx)^2+(b+my)^2+(c+mz)^2>=0.
令t=ax+by+cz
即:对任意m,1+2mt+9m^2>=0恒成立,
因为开口向上,所以判别式

(a^2+b^2+c^2)+2m(ax+by+cz)+m^2(x^2+y^2+c^2)=(a+mx)^2+(b+my)^2+(c+mz)^2>=0.即:对任意m,1+2mt+9m^2>=0恒成立。所以(2t)^2-4*9<=0,-3<=t<=3.
(ax+by+cz)max=3