急需初三上学期的关于二次根式和一元2次

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:23:31
急需初三上学期的关于二次根式和一元2次
xXNJ[m;r_`(@:::!3[[O,GYRvzKZF E7kbekČzG_Bn*M}^7"[T_`%lYZbמb'0-^{/K UUN~3ZV.gf ;rg@ Y9܈{Xr3l5xqs)a]!{noUS: `aيHXֱae9Fָ\l=!-c%a  o +>X߿ 6܆۰n"sMt䌼auCE&*g@<);HvW" lyڭ[̊'⨩A=ݥ9X(i,8BH'~eV:6p!G >r4X9:Wו<?;I:P->ŦKo-CXC%;:D?ث!eK.M"\54rh 6UޘOj؎4a7+' >kMC Y01H(QH*]kOcÔ+Cx+i4Y0ͅ_E{*YNρ2C,6V-kO rQVsE-rr1?}kc:rN@K1 Gƥ ˹LcY95w("Dl+1яerrz+P"(D)_2@(1A[D*L ?B^%rF /ƂwM1+ 'ڳy:.ZE}TKpU@G鰣y'yIVVm=_`}S%3KkC1+O c@Gbn2։;R8o |$gKk9`t~ZAJa)iZBQ@Wvs=TUvXꢾH@B-X c"!T 'FIccJiL&%y}SwEA NKFʼn!SC{Qq  %B+z%4LΕ27XwKkpp]T /'$ܞoD+1^Ess~sf;h%25OAJ\.%]97GND9SO kAK,jsyVD%2{P} {*z#`2v+%WوN8Hl=eq:h37me*2ו!E * cB4FE4Sj17Ԧphb0ILeT'!;yx_o^@Vu\Stqx.}K}%te^8Ɓ71]YU~g?zpZw2=Jl-H齂+DU)2ז 9ÎBZPeŸ_ue jhʈJk9MD{ /U፥T(*BѦxW GFE2%Z3^g

急需初三上学期的关于二次根式和一元2次
急需初三上学期的关于二次根式和一元2次

急需初三上学期的关于二次根式和一元2次
一、选择题 (共8题,每题有四个选项,其中只有一项符合题意.每题3分,共24分):
1.下列方程中不一定是一元二次方程的是( )
A.(a-3)x2=8 (a≠3) B.ax2+bx+c=0
C.(x+3)(x-2)=x+5 D.
2下列方程中,常数项为零的是( )
A.x2+x=1 B.2x2-x-12=12; C.2(x2-1)=3(x-1) D.2(x2+1)=x+2
3.一元二次方程2x2-3x+1=0化为(x+a)2=b的形式,正确的是( )
A.; B.; C.; D.以上都不对
4.关于 的一元二次方程 的一个根是0,则 值为( )
A、 B、 C、 或 D、
5.已知三角形两边长分别为2和9,第三边的长为二次方程x2-14x+48=0的一根,则这个三角形的周长为( )
A.11 B.17 C.17或19 D.19
6.已知一个直角三角形的两条直角边的长恰好是方程 的两个根,则这个直角三角形的斜边长是( )
A、 B、3 C、6 D、9
7.使分式 的值等于零的x是( )
A.6 B.-1或6 C.-1 D.-6
8.若关于y的一元二次方程ky2-4y-3=3y+4有实根,则k的取值范围是( )
A.k>- B.k≥- 且k≠0 C.k≥- D.k> 且k≠0
9.已知方程 ,则下列说中,正确的是( )
(A)方程两根和是1 (B)方程两根积是2
(C)方程两根和是 (D)方程两根积比两根和大2
10.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为( )
A.200(1+x)2=1000 B.200+200×2x=1000
C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000
二、填空题:(每小题4分,共20分)
11.用______法解方程3(x-2)2=2x-4比较简便.
12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.
13.
14.若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a、b、c的关系是______.
15.已知方程3ax2-bx-1=0和ax2+2bx-5=0,有共同的根-1,则a= ______,b=______.
16.一元二次方程x2-3x-1=0与x2-x+3=0的所有实数根的和等于____.
17.已知3- 是方程x2+mx+7=0的一个根,则m=________,另一根为_______.
18.已知两数的积是12,这两数的平方和是25,以这两数为根的一元二次方程是___________.
19.已知 是方程 的两个根,则 等于__________.
20.关于 的二次方程 有两个相等实根,则符合条件的一组 的实数值可以是 ,.
三、用适当方法解方程:(每小题5分,共10分)
21.22.
四、列方程解应用题:(每小题7分,共21分)
23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%,若每年下降的百分数相同,求这个百分数.
24.如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?
25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?
26.解答题(本题9分)
已知关于 的方程 两根的平方和比两根的积大21,求 的值
《一元二次方程》复习测试题参考答案
一、选择题:
1、B 2、D 3、C 4、B 5、D
6、B 7、A 8、B 9、C 10、D
二、填空题:
11、提公因式 12、- 或1 13、 ,14、b=a+c 15、1 ,-2
16、3 17、-6 ,3+ 18、x2-7x+12=0或x2+7x+12=0 19、-2
20、2 ,1(答案不唯一,只要符合题意即可)
三、用适当方法解方程:
9-6x+x2+x2=5 (x+ )2=0
x2-3x+2=0 x+ =0
(x-1)(x-2)=0 x1=x2= -
x1=1 x2=2
四、列方程解应用题:
设每年降低x,则有
(1-x)2=1-36%
(1-x)2=0.64
1-x=±0.8
x=1±0.8
x1=0.2 x2=1.8(舍去)
答:每年降低20%.
设道路宽为xm
(32-2x)(20-x)=570
640-32x-40x+2x2=570
x2-36x+35=0
(x-1)(x-35)=0
x1=1 x2=35(舍去)
答:道路应宽1m
25、⑴设每件衬衫应降价x元.
(40-x)(20+2x)=1200
800+80x-20x-2x2-1200=0
x2-30x+200=0
(x-10)(x-20)=0
x1=10(舍去) x2=20
设每件衬衫降价x元时,则所得赢利为
(40-x)(20+2x)
=-2 x2+60x+800
=-2(x2-30x+225)+1250
=-2(x-15)2+1250
所以,每件衬衫降价15元时,商场赢利最多,为1250元.
26、解答题:
设此方程的两根分别为X1,X2,则
(X12+X22)- X1X2=21
(X1+X2)2-3 X1X2 =21
[-2(m-2)]2-3(m2+4)=21
m2-16m-17=0
m1=-1 m2=17
因为△≥0,所以m≤0,所以m=-1