已知函数f(x)在R上对任意x1,x2有:f(X1X2)=f(x1)+f(x2),求证:f(x)是偶函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:19:43
x){}K}6uCF9+z~ݻWT=~Ϭ4#M[2CMm ilcӋ`
g3?m1&Hvi` =ZJ,`}@aj]r]B" @٨f P;
D@Q~O'j$ف 4
已知函数f(x)在R上对任意x1,x2有:f(X1X2)=f(x1)+f(x2),求证:f(x)是偶函数
已知函数f(x)在R上对任意x1,x2有:f(X1X2)=f(x1)+f(x2),求证:f(x)是偶函数
已知函数f(x)在R上对任意x1,x2有:f(X1X2)=f(x1)+f(x2),求证:f(x)是偶函数
f(1)+f(1)=f(1*1)=f(1)
所以:f(1)=0
f(-1)+f(-1)=f((-1)*(-1))=f(1)=0
f(-1)=0
所以:f(1)=f(-1)=0
f(-x)=f(-1)+f(x)=0+f(x)=f(x)
f(x)是偶函数
已知函数f(x)在R上对任意x1,x2有:f(X1X2)=f(x1)+f(x2),求证:f(x)是偶函数
设函数f(x)是定义域在R上的函数,若对任意X1,X2都有f(X1+X2)+f(x1-x2)=2f(x1)f(x2)求f(x)奇
已知定义在实数上的函数f(x)满足对任意函数,都有f(x1*x2)=f(x1)+f(x2)成立,确定f(x)奇偶性?
定义在R上的偶函数f(x),对任意x1,x2属于[0,+无穷大)(x1不等于x2),有f(x2)-f(x1)/x2-x1
定义域在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有f(x2)-f(x1)/x2-x1
定义域在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有f(x2)-f(x1)/x2-x1
已知定义在R上的单调函数y=f(x),存在实数x0,使得对任意实数x1、x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.(1)求x0的值.
关于函数单调性的题,已知定义在R上的函数f(x),对任意x1,x2∈R,且x1≠x2,总有(x1-x2)[f(x1)-f(x2)]>0,且函数f(x)的图像经过点A(5,-2),若f(2m-1)<-2,求m的取值
已知定义在R上的函数y=f(x)满足以下三个条件:(详解) 已知定义在R上的函数y=f(x)满足以下三个条件:(1)对任意的x∈R,都有f(x+4)=f(x);(2)对任意的x1,x2∈R,且0≤x1
已知函数f(x)=ax^2 +4x-2满足对任意x1,x2属于R且x1不等于x2,都有f[(x1+x2)/2]
定义在R上的函数f(x) (f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0
(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数X1,X2,总有f(X1+X2)=f(X1)f(X2),且x>0时,0
(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0时...(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0时,0<f(
定义在R上的函数f(x)满足,如果对任意X1,X2∈R,都有f(x1+x2/2)≦1/2,[f(x1),f(x2)],则称函数f(x)是R上的凹函数.已知函数f(x)=ax2+x(a∈R且a≠0)求证:(1)当a>0时,函数f(x)是凹函数(2)如果x属于[0,1],|f(x
若定义在R上的函数f(X)满足:对任意X1,X2都有f(X1+X2)=f(X1)+f(X2)+1,则f(X)+1为偶函数,为什么不好意思,应该为奇函数
高一数学,若定义在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2)+1,则下列说法正确的是高一数学,若定义在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的
若定义在R上的函数fx满足:对任意x1,x2∈R有f(x1+x2)=fx1+fx2+1若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是A.f(x)+1为奇函数B.f(x)+1为偶函数C.f(x)为奇函数D.f(x)
若定义在R上的函数f(x)满足:对任意X1 X2有f(X1+X2)=f(X1)+f(X2)+1若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是(A)f(x)为奇函数 (B)f(x)为偶函数(C) f(x)+1为奇函