科学家与数学家的故事

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 02:03:42
科学家与数学家的故事
x}n+ٕꇆ$Xޜ.Fu w2` Y@8JDJ@jJdp)NzOC/i9S"#N֞N?.6MÊ3߽5w'pJ?%4λo>oF_ozf˄i^`\f-ɑn7}S!~ݽ?ƕȟ9ϏMwWܣŤmmw{}}pwfb re\0;Xx1,{(cp û[qnoκi_+Lڔ(jM5sfƒb/EO{mLGi?k&tM$v54Mz1 ,$ӹ~n?q+!M ,x_L޴nʕllkT ?y{{%6/arWða4jѬ;KîizY_~an~nJ&IzX$u )TrBX9{ε P_>X_RM}+˜֪}ݾW9slPvg eտ#Fj#M2dCjG&smvP?kqdn^s3p{ESly+ܔ_R5Ĉuw]&0w߾ f޴{otK㦯/`u 3+I?}rrK:p؜5:Թf x]3_!f;O&󄇘T??b3+f FmcS4wG~ګݙwKsq1/Qڭ4(\ m[ʼ{|V~O3Oj-eiI};C|l+,>߁M:n1Mk66ƺTKvsKM8crܽc뻖O֡icB9&R:E)yǿHш.s9tmve6%wƹo`-g-Zhzg˟b-p [i9s7x}6)Hk榻7־eŴ )`w7zpsWj߁ AOSҜpyC|1w/ݙRdb\eow| |^xƦLɫbTIud_LL@Ma%Yh-CfvPIPSa*&3C:S^>9yH`q?ߣtl*I#1E?#K@o㩑"jB)uA`}PIXAŸC{RKyc<͞ym;--;IlxX>b|='g>UA /p06tAi&3r8$vYi僝ytH= peh NqdY3ۚ!ǟN"NL&h28tlFc;9&wS%/_84]JM*L>kf&f #8No8ڸ{]k9v脶Ra  I\p2U[e_lb7ʘވ\-ZTHXC$v$wz խ_q@= 0Vo#9!׆sn'Ay1 ^pSa2p@7SxaLOebqC'$JNȤRpo/D03,:idka֡蹁nuOS0?tO˕AC;@\]s`@]lބ"[&;m@@X.ާ-z7%*hnWw43o<1yr}Ŵ554,,IzmiSw\M̀֞hsj?w0F@&o8V&la=SHOOUDؒ T:}~DԨ9PD MJ+_9hQXo-ԢnϏ*wvOzPה~Ҟ4KZmlAj+\SNw+ч8T| |آzZ(s"2eHi[BW}l9a;o‡oP j#)+( z#M*˺<4U0<3fױ~g΂ >{cxj#_.5{-n2NDP֊>jv?HoD+i9MidLÎ AG_3>*`]ojԁ0U67/qƱUa$nMq==HѐcDŽ"42ږz/8K%J2tO7Ad(k4±=3*8ykbb`WZDg: ijeF=p*Jo_1[ |lr$o+)8˫ _eԃA\}PkR :;zQ10D&xh6&9 _ӏI@S0ڇ޸>x t`,%6!epOoTG@w M( ~dc 1<6ScWe 3&PաN7Ip<HLiy7Tn]3wí^* Lqjf wv 4]Rc2ƻ;po ΋PK]UmC4H]ߙ C)֞+[Kƃ(utNo` ,Sj4ZExdPJƥO u&e^{x~>XBm8:ѧ魚|X 46XlZ\ÈYv:tmPϗE_?<`nPV0yS(k &똚(ޟK-(%  K-KRK|Yb HJJ@H\>}А,U(` Yԇ(y8 7uA_k6;n&{PʀQYƕK]j58]Bp?ӯӿ~%Gv'^>w!/@|JG :0ibQ\l!3nY~~?~oI2#mfr*VdsewA}Ej _oIuҏigu-`:l*&_}eFsdB"3fw~Ԙ0 .vD.al=7aXTwngZ2{yv%>&@Lݽ[q/t,?!R}@߬>w9 cW3жJ$xJ@gV 3NFօi'sD3?*Mz] {>4'S3q>gh]P͗FRج64 @k%A>EȺ 6B=؛N0sKFiSɪNm7^"ШL߃f-G`GO(7#z#htZ+14dneU]ucD@Dl.&nNR2CbB ׸7(^26S8ᖅAaNJC^'m10LGzo!1=[\{JR&WFMQf$2(}(ϫa\Jhc[;s\P ĪL73>|7Egea=AeVsת4ʗ&a⩢niԔOIl6B|rlk0Jzs=\89ZcS"; W_0CrL'n[~m.F{sSjReiu ("O0E({_ĭ@xU K]/7âoEjDbdnm-9{魖I,f._E)!)t{F"S|$b#P%n @ ǺaOdXJD h ̷Tt#H0" ^!SRZ0M/y,rհY4eHQ~lX|?Cj/6E9~ Qv0i09-%Tɬ&E(~,<)R+.Ѐ+eJx(㥗CPMbeHwP+}X{'&E B1D0IQ`$k95ִٸ5]8Aɰ %ei$mh\d X{t2D^6-ՠ/vl!$f9~ ^=C{$<˫Qttj1˳e8x|bzlz(l&E(l\]r/Tl!%: e}/[zyƗezg~Lx2I*$Yp= f=si;ԭ~:f]2W;[8K|'3lD!Q'8 qjטcPzj^nik3VEcs:L˽ vE.: &TWb_7Y!GA$AM1E^ib5V(y !6Dā<0 sy5~ĬI_6ItXd O1~&?85[ Y^z`G{nfBV88:+&VP' \n{<}jkbW_OxGfxH%ղ z,é[Oó)ZEO,޳s? d~=d-*.3y +:3h@-ZIALgYo ̉9,X10MOz&Vsmas ĠwCi1U6J WDtٜƤt59=|St7r!6KgZaq1 ruW3/L8,f,Aa]{B;>Ij$vbD:F%ʝgq6U:;kCi?w 8:68mt w֬U0*A,o8Im1KrD;΀$BB bNQRH1s.zr76{Csl;k;!q80nnRpVb" ^G޽3PʭAPM7a%2VB_da ^ ncj/WCi yuͳ})yQ>xCEWk N3<<њ~%!%RۋE:A;O Yﶜ c՘TR j ~<Sj yS7?g!<'F{ - p-bְ]XBTS)@;V>Q1%8i.ZmW Z׫ӿ's^2 9׊2|gz?ܻ 7Ӳ4!L~>ˑ4~ )-vO^ކN'l%(R2 TnU'5 èݷ0@vX}^8 nkL\p6 ѓ>t#!L9WXl;"Ȉ%DJ2=-vrd~El%уAsbk9W/*D5 j\8F\Z٢ϗMccM`ۊ&/^"S eZ瀦 ֣k1FgPw3ݱa`Ž}*,j7y`(ۋ*Kh-(aY= Ь&`1 8kꨞ30=6U=%ǻ}k/ޚ^؅JG{L̠ZKa[^o:# &d'+n浹:0|גC Pe<_2Pt@P-,X=]JVh5hY,-CF8d2@gXrSW5nx.3$Et;tDJ>?ehiu@yEh2R??Et{% @PJx=vwxp`ȋâTH&^J/V2V:xk%#2OZ9VsC ^AUk_ *Q[.ôGXb+wj +L#^D^ܓ|g}oD)䠖<-n>6WQlm@XrqP(uGkt7/5ܥ6ŹPm9 DMq2KDI;Z.zQdR4>w+Qݳb >צa)'vҳ](RЀ[!f]aG.e}r ϋQ~ 4aIqK>gp B9xW+$0\Ƌ3 Gof&-D{PnwOpyi)QIJЈ'޴JMNnKَ{2ٌ5C0یԏ}د[f㤕&QA=ݴͺqK>l3"J8åK X1Q><0)en7?1l*e*ձ-ݸ+%l(dN xR္K%lj_pՎ2,@jhZ5iB;4 }G ueXTtm|ǖ("` >`/Dw ȯoDFPPIũwZ䃫; &^ޝfZv^X8??)<Ձ(85Ga1?d\,vqFl(lɧhپ6a|jnzrr!`=18N&MV3&f_()Zu~KӲݠx\+*PU+k`d|p ] cqvǺ8,* EҧJ\DR)uY:nn1=N}0 Y4ZQC]Z;ica%#0D%x?ԅ;d5-O(x%&m9 !3LU轜D oQՊ-@"}-&Q`_V~@+18G,%T ($7 s~68w;^y#3k;Av5!u ^HxyN(RD2D'*;mZ p@G<\ԇmĠ, ~EU̧fv$TQ(^Bұ#}ǸAQdwWGvG}]r _x'd_壨4Vj_1;wC0ȨT x#ՀhJ>#=bqkm`3~2 ״9_ecLU+)Қȗd&#!8ͺ+VmNj^|Ⱥ9{ZV%Bf>BlmXcli f BV$Okb?^tLZvyTHy+x9gmu4AH~֙UZTs ҙo޲v\ǣF<XB-?Z6SMj?e -EfdV<3j2^Zar;Sm-Z"[զqo;z4Z9ʲ$Vg/'# +NQTPdEˬ\BlX$X'^E|Omx[""D}I4"Qh&qSRSK ƛp9=%fi;%4,?XCk%P`M)bha:)|0%D+"x)ZiYUx BjK[ \é+NaǴ /xO_ct1,+`[ʠ_ lc&t3/SjUcH(ڡ)-k䌁40᪹L{hܴVbĬ 2+OE- .0 j(TPmBPr :ɲ=O=vJB VBaO-QOOatXS&vpMpgX{vj}#U[!궽-F+f;9w%×ٳQh{xٚ2[%@l8껰jVH9P(VXT[$f\MhPkc3=Ӷ%4j"& m wI{R,Pw+2٨0_mz)1-{87q9TZ؟ddvάV-Gh[*d_\ )sJPR-,6ۮ52./LF/'%Ndamzc j+ wUԪPָ34M7jnK+gajg? hc@SDma`b=)6#1.Abkj0y<&e*މ3?f]]! 7گ ФTBbbZ|\ %?dz8$>!A:d8iX:lԊ;VfG߶air#'jsf^j]#.=c/JURMVFչz'9-}F' ez# OmpO 0;F<]<@D-6+ǧWI_IMj";M Q SCɍ҉,ub># @b _ LeoܳV/҆Erk.Kn7'#b\++/ګNtN{,Sd{>eT[w]għj %t%E4Ycr(Rٿf984H-}׃:Ӓhֱ%$QP}M?4D ??O[g7!~0;6R0R0v4 U.T `fsBƌnwOM;I0q^9cڰ 0ˣzLL5 K۷Nqi>K,IV56鄩ޯ9йM3cIŴX6ayL+-;3(K4HZ$]Q[kv㓥8j&Fek)[=-TT;IM(%L&`+t[,j )GAćP| #80 .sq͠OEr20h#ˑm򠨃2tl_К=/%:DG\Kz6͇fze=NQV氮 Tm[,E;xf=YZ`Y=ց'h7 99>ydtǙ%ri-;Kkif6R0i' ȻpL't`b%s)׸ **z(]ң ??/ʧyDo*&P=KY]|Mlϒ۠J#Ja,Kv/k %BbW`^ґ[/i4៭p w^[0ÔPgpnp.Er4,N6 fű;+K j=]3o&4 ʣy\m?b_/= oAU)_nj Їeȱ&5hFT/9=JU%l8CȒJ8yM,#hku݃)(Vj[!|[q4q E\zZͤJ3>iOα7\iHCT&mSMa`1!nJ(ز;K9غO)VuS!qy4/, %]//>" P.l}cVX\{ 3Ag?zH&hz5 ftJߖ3Y$ 0ht*?g _^۲ў<4gŗ8؜s1h$/:smvNeӪ}!a{-w|h5ղ(BŏR\bQqVpyBDP;*DW&T`:\ -FZ|7Y0ͪ@<+`:;S/%KYr{x:rsCuyf^=ˁ$Q|@9M7N7>O]P_f0'UNj- 6nR r/AMMS|&[AOkI#7NI76AS'%7*w֛AmӖ[O(b&LMlә_{cnvG`k:7@xc,p!l'(%DBZpKs3bdLt<{bWx@tTc ᙊX)V{ޕ^KVa,{ ё|y{<Ӭa"Ԧ[܎Mpkgn_3?!:Oݽ{v&j˥R_“VYSQ5jзPּ] {f kҗ `{u41uV_yog&|ן}g~ٻoݛ_5t` %,Ո, +z)Qf.mGaVi#?-o,7܀7zHLqz>׫k\8*q#D0tMv4A&,7`ab;lUo@SoKv]9,/>, ^ +*܄i9N\*0 kXƟoޓ>@Ǖ7?oIX| 8e|=Y-F$ЗpȹaÂb:z69n 'L \ΑZ,48*9򼔍2j8ju=),J1I6}8Qj-CQMǦy*%zufWq7 X+{Z7yY]n8q֣ݲ蹇 .HO?/hc|nӽ=ڭ$`+*~/9YqRϢ\$~$ iڣUm<ҥ@=W,XX+ `ϾK.&^15z=anV*ͤOz9Jw{y=^}c, ^ ʺ[=n9y؊stZX _Ŀŏ+cL 2R^JKKWn`H^')Y91)'q([Z#d _w]Gy5vV_:`d }ʖ6ySoĝ R;ʤ8P轱+>PG9_!5(^p&M>gΗv+kL}iGp}4h:c3*6,]+3<'wxѻ8)( v9lzR^:-e< Wa|&%]Ns 1}y e[!w'Dqi7|ɚvۓT2S@"Zhu;xizp1SrXWOB{v{^{Lẍ55:% <)p+Φq9FMeFBfl-n~?-|z=(>|iM4 Ԉ~[0z9DtnRcvʌ",Xa,'ۇN8eIZʇrl)遰RVeY2,Jbفgt|cH|5]NX/b{Y#*nc g\E)Ԋn;Z R?@\Io`#h2

科学家与数学家的故事
科学家与数学家的故事

科学家与数学家的故事
1832年5月30日清晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院.第二天早晨十点,这个可怜的年轻人离开了人世,数学史上最年轻、最富有创造性的头脑停止了思考.后来的一些著名数学家们说,他的死使数学的发展被推迟了几十年,他就是伽罗华.
少年
  1811年10月25日,伽罗华出生于法国巴黎郊区拉赖因堡伽罗华街的第54号房屋内.现在这所房屋的正面有一块纪念牌,上面写着:“法国著名数学家埃瓦里斯特·伽罗华生于此,卒年21岁,1811~1832年”.纪念牌是小镇的居民为了对全世界学者迄今公认的、曾有特殊功绩的、卓越的数学家——伽罗华表示敬意,于1909年6月设置的.   伽罗华的双亲都受过良好的教育.在父母的熏陶下,伽罗华童年时代就表现出有才能、认真、热心等良好的品格.其父尼古拉·加布里埃尔·伽罗华参与政界活动属自由党人,是拿破仑的积极支持者.主持过供少年就学的学校,任该校校长.又担任拉赖因堡15年常任市长,深受市民的拥戴.伽罗华曾向同监的难友勒斯拜——法国著名的政治家、化学家和医生说过:“父亲是他的一切”.可见父亲的政治态度和当时法国的革命热潮对伽罗华的成长和处事有较大的影响.   伽罗华的母亲玛利亚·阿代累达·伽罗华曾积极参与儿子的启蒙教育.作为古代文化的热烈爱好者,她把从拉丁和希腊文学中汲取来的英勇典范介绍给她儿子.1848年发表在《皮托雷斯克画报》上有关伽罗华的传记中,特别谈到“伽罗华的第一位教师是他的母亲,一个聪明兼有好教养的妇女,当他还在童稚时,她一直给他上课”.这就为伽罗华在中学阶段的学习和以后攀登数学高峰打下了坚实的基础.   1823年l0月伽罗华年满12岁时,离开了双亲,考入有名的路易·勒·格兰皇家中学.从他的老师们保存的有关他在中学生活的回忆录和笔记中,记载着伽罗华是位具有“杰出的才干”,“举止不凡”,但又“为人乖僻、古怪、过分多嘴”性格的人.我们认为这种性格说明他有个性,而且早已显露出强烈的求知欲的标志.   伽罗华在路易·勒·格兰皇家中学领奖学金,完全靠公费生活.在第四、第三和第二年级时他都是优等生,在希腊语作文总比赛中也获得好评,并且在1826年l0月转到修辞班学习.   但是第二学季一开始(伽罗华这时刚满15岁),由于教师们认为他的体格不够强壮,校长认为他的判断力还有待“成熟”,他不得不回到二年级.重修二年级,使伽罗华有机会毫无阻碍地被批准去上初级数学的补充课程.自此他把大部分时间和主要精力用来研究、探讨数学课本以外的高等数学.   伽罗华经常到图书馆阅读数学专著,特别对一些数学大师,如勒让德的《几何原理》和拉格朗日的《代数方程的解法》、《解析函数论》、《微积分学教程》进行了认真分析和研究,但他并未失去对其他科目的兴趣.   因此,当1827年伽罗华回到修辞班时,他的全面发展甚至比他的数学的天分在同学之中更加出人头地了.但是他对其它科目的教科书的内容以及教师所采用的教学法之潦草马虎感到愤怒.所以有的教师认为他被数学的鬼魅迷住了心窍,有的教师用七个字“平静会使他激怒”来形容他的行为.   这时伽罗华已经熟悉欧拉、高斯、雅可比的著作,这更提高了他的信心,他认为他能够做到的,不会比这些大数学家们少.到了学年末,他不再去听任何专业课了,而在独立地准备参加取得升入综合技术学校资格的竞赛考试.结果尽管考试失败,但1828年10月,他仍然从中学初级数学班跳到里夏尔的数学专业班.   路易·勒·格兰中学的数学专业班教师里夏尔,在科学史上,他作为一个很有才华的教师使人追念.里夏尔不仅讲课风格优雅,而且善于发掘天才.他遗留下的笔记中记载着:“伽罗华只宜在数学的尖端领域中工作”,“他大大地超过了全体同学”.   里夏尔帮助伽罗华于1828年在法国第一个专业数学杂志《纯粹与应用数学年报》三月号上,发表了他的第一篇论文—《周期连分数一个定理的证明》,并说服伽罗华向科学院递送备忘录.1829年,伽罗华在他中学学年快要结束时,把他研究的初步结果的论文提交给法国科学院.   1829年,中学学年结束后,伽罗瓦刚满18岁,他在报考巴黎综合技术学校时,由于在口试中主考的教授比内和勒费布雷·德·富尔西对伽罗华阐述的见解不理解,居然嘲笑他.伽罗华在提及这次考试时,曾写道,他不得不听“主考人的狂笑声”.据说“由于被狂笑声所激怒”,他把黑板擦布扔到主考人头上,或是因为他拒绝回答有关关于对数这样的过于简单的问题,所以再次遭到落选,伽罗华仍然是一个非正式的预备生.   1829年7月2日,正当伽罗华准备入学考试时,他的父亲由于受不了天主教牧师的攻击、诽谤而自杀了.这给了伽罗华很大的触动,他的思想开始倾向于共和主义.其后不久,伽罗华听从里夏尔的劝告决定进师范大学,这使他有可能继续深造,同时生活费用也有了着落.1829年10月25日伽罗华被作为预备生录取入学.   进入师范大学后的一年对伽罗华来说是最顺利的一年,1828年他的科学研究获得了初步成果.伽罗华写了几篇大文章,并提出自己的全部著作来应征科学院的数学特奖.但在这里,他又一次遭到了新挫折:伽罗华的手稿原来交给科学院常任秘书傅立叶,傅立叶收到手稿后不久就去世了.因而文章也被遗失了.这些著作的某些抄本落到数学杂志《费律萨克男爵通报》的杂志社手里,并在1830年的4月号和6月号上把它刊载了出来.
青年
  在师范大学学习的第一年,伽罗华结认了奥古斯特·舍瓦利叶,舍瓦利叶直到伽罗华临终前一直是他的唯一亲近的朋友.1830年7月,伽罗华将满19岁.他在师范大学的第一年功课行将结束.他这时写成的数学著作,已经使人有可能对他思想的独创性和敏锐性作出评价.   现代群论的奠基人是只活了廿年的法国数学家伽罗华﹝Évariste Galois﹞.生於十九世纪初,伽罗华在十二岁前只接受过家庭教育.伽罗华把研究成果呈交法国科学院予名数学家柯西﹝Augustin Louis Cauchy﹞却给弄丢了.伽罗华重考综合工科学校时父亲因遭人中伤而自杀.伽罗华就读高等师范学院时撰写论文呈予傅里叶﹝Joseph Fourier﹞逐鹿奖项又遭弄丢.伽罗华於法国七月革命时在校报上抨击校长而被迫退学.伽罗华曾身陷囹圄.伽罗华迷恋医师之女追求无果.伽罗华预期自己时日无多,发愤挑灯夜战,急染翰操觚,勾画毕生所学,谱出最後乐章,并注云:「我没有时间了」.次天,伽罗华便撒手尘寰,邋邋遢遢黯然而去.
晚年
  伽罗华跟不少艺术家一样,半生偃蹇潦倒,到死後才绽放闪烁璀璨的光芒.他的理论有什麼精湛之处?不少数学或科学理论,我们会认为即使那理论的创建者没有发展出那理论,日後总会有其数学家或科学家发展出该理论.例如,牛顿和莱布尼茨几乎同时而独立地发展出微积分.然而,有些数学或科学理论,我们难以相信其创建者以外有人能发展出那理论.例如,费曼就怎样也想不到爱因斯坦是如何创建广义相对论的.而伽罗华的理论,就是这种别出机杼的神来之笔.编辑本段数学世界的顽强斗士
  19世纪初,有一些数学问题一直困扰着当时的数学家们,而如何求解高次方程就是其中之一.   历史上人们很早就已经知道了一元一次和一元二次方程的求解方法.关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述.到了十三世纪,宋代数学家秦九韶在他所著的《数书九章》的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候已得到了高次方程的一般解法.   在西方,直到十六世纪初的文艺复兴时期,才由意大利的数学家发现一元三次方程解的公式——卡当公式.   在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576年)问到了这个三次方程的解的公式,并发表在自己的著作里.所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),   三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560年)解出.这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法.遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决.法国数学家拉格朗日更是称这一问题是在“向人类的智慧挑战”.   1770年,拉格朗日精心分析了二次、三次、四次方程根式解的结构之后,提出了方程的预解式概念,并且还进一步看出预解式和方程的各个根在排列置换下的形式不变性有关,这时他认识到求解一般五次方程的代数方法可能不存在.此后,挪威数学家阿贝尔利用置换群的理论,给出了高于四次的一般代数方程不存在代数解的证明.   伽罗华通过改进数学大师拉格朗日的思想,即设法绕过拉氏预解式,但又从拉格朗日那里继承了问题转化的思想,即把预解式的构成同置换群联系起来的思想,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化或归结为置换群及其子群结构的分析.   这个理论的大意是:每个方程对应于一个域,即含有方程全部根的域,称为这方程的伽罗华域,这个域对应一个群,即这个方程根的置换群,称为这方程的伽罗华群.伽罗华域的子域和伽罗华群的子群有一一对应关系;当且仅当一个方程的伽罗华群是可解群时,这方程是根式可解的.   1829年,伽罗华在他中学最后一年快要结束时,把关于群论初步研究结果的论文提交给法国科学院,科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人.在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会.他在一封信中写道:“今天我应当向科学院提交一份关于年轻的伽罗华的工作报告……但因病在家,我很遗憾未能出席今天的会议,希望你安排我参加下次会议,讨论已指明的议题.”然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作,这是一个非常微妙的“事故”.   1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了,以参加科学院的数学大奖评选,希望能够获奖.论文寄给当时科学院终身秘书傅立叶,但傅立叶在当年5月去世了,在他的遗物中未能发现伽罗华的手稿.就这样,伽罗华递交的两次数学论文都被遗失了.   对事业必胜的信念激励着年轻的伽罗华.虽然他的论文一再被丢失,得不到应有的支持,但他并没有灰心,他坚持他的科研成果,不仅一次又一次地想办法传播出去,还进一步向更广的领域探索.编辑本段天才的陨落
  伽罗华诞生在拿破仑帝国时代,经历了波旁王朝的复辟时期,又赶上路易·腓力浦朝代初期,他是当时最先进的革命政治集团——共和派的秘密组织“人民之友”的成员,并发誓:“如果为了唤起人民需要我死,我愿意牺牲自己的生命”.   伽罗华敢于对政治上的动摇分子和两面派进行顽强的斗争,年轻热情的伽罗华对师范大学教育组织极为不满.由于他揭发了校长吉尼奥对法国七月革命政变的两面派行为,被吉尼奥的忠实朋友,皇家国民教育委员会顾问库申起草报告,皇家国民教育委员会1831年1月8日批准立即将伽罗华开除出师范大学.   之后,他进一步积极参加政治活动.1831年5月l0日,伽罗华以“企图暗杀国王”的罪名被捕.在6月15日陪审法庭上,由于共和党人的律师窦本的努力,伽罗华被宣告无罪当场获释.七月,被反动王朝视为危险分子的伽罗华在国庆节示威时再次被抓,被关在圣佩拉吉监狱,在这里庆祝过他的20岁生日,渡过了他生命的最后一年的大部分时间.   在监狱中伽罗华一方面与官方进行不妥协的斗争,另一面他还抓紧时间刻苦钻研数学.尽管牢房里条件很差,生活艰苦,他仍能静下心来在数学王国里思考.   伽罗华在圣佩拉吉监狱中写成的研究报告中写道:“把数学运算归类,学会按照难易程度,而不是按照它们的外部特征加以分类,这就是我所理解的未来数学家的任务,这就是我所要走的道路.”请注意到“把数学运算归类”这句话,道出了他的理想、他的道路.毋庸置疑,这句话系指点目前所称的群论.由于其后好几代数学家的工作,最终才实现了伽罗华的理想.正是他的著作,标志着旧数学史的结束和新数学史的开始.   l832年3月16日伽罗华获释后不久,年轻气盛的伽罗华为了一个舞女,卷入了一场他所谓的“爱情与荣誉”的决斗.伽罗华非常清楚对手的枪法很好,自己难以摆脱死亡的命运,所以连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿.   另有一说,根据今年的研究,并不是舞女而是斯蒂芬妮.波特林.杜.莫特尔,伽罗瓦遭到求爱遭到拒绝后,说了些冒犯她的话,后与其父与未婚夫决斗,galois在生活中受到巨大打击,论文三次被拒,挚爱的父亲自杀,未能考入综合工艺学院,年轻的充满激情的心被心上人撕碎,如此巨大的压力下,决斗仅仅是他自杀的一种方式,决斗方式为两人从一把有子弹的枪和一把无子弹的枪中随机选一把,隔着25公尺射击   他不时的中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲.他在天亮之前那最后几个小时写出的东西,为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一片新的天地.   伽罗华对自己的成果充满自信,他在给朋友舍瓦利叶的信中说:“我在分析方面做出了一些新发现.有些是关于方程论的;有些是关于整函数的…….公开请求雅可比或高斯,不是对这些定理的正确性,而是对这些定理的重要性发表意见.我希望将来有人发现,这些对于消除所有有关的混乱是有益的.”   第二天上午,在决斗场上,伽罗华被打穿了肠子.死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去”.他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻.他不朽的纪念碑就是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成.   历史学家们曾争论过这场决斗是一个悲惨遭的爱情事件的结局,还是出于政治动机造成的,但无论是哪一种,一位世界上最杰出的数学家在他20岁时被杀死了,他研究数学才只有五年.编辑本段天才之死
  
伽罗瓦
阿贝尔死于贫穷,伽罗华则死于愚蠢.全部科学史上,极度愚蠢战胜不可抑制的天才的例子,再没有比埃瓦里斯特·伽罗华过于短促的一生所提供的例子更全面了.关于他的不幸的记录,很可能作为一切自负的教书匠、无耻的政客,以及骄傲自满的院士们的一个不祥的纪念碑而竖立.伽罗华不是“无用的天使”,但是面对大群愚蠢的人联合反对他,就连他那非凡的力量也被粉碎了,他在同一个接着一个的不可战胜的蠢材的斗争中,耗尽了自己的生命. (在告别人世的前夜)整个晚上,他把飞逝的时间用来焦躁地一气写出他的科学上的最后遗言,在死亡之前(他预见到死亡能够追上他)尽快地写,把他丰富的思想中那些伟大的东西尽量写一些出来.他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着涂写下一个极其潦草的提纲.他在天亮之前那最后几个小时拼命写出的东西,将使世世代代的数学家们忙上几百年.他一劳永逸地给一个折磨了数学家达几个世纪之久的谜,找出了真正的解答.这个谜就是在什么条件下方程是可解的.但这只不过是许多事情中的一件.在这项伟大的工作中,伽罗华极其成功地用了群论.伽罗华的确是今天在全部数学中具有根本重要性的这一抽象论的一位伟大先驱者. 伽罗华把他的遗嘱委托给他忠实的朋友舍瓦利耶,全世界都应该感谢它被保留了下来.“我亲爱的朋友,”他开始写道,“我在分析方面作出了一些新的发现.”然后他在时间允许的情况下着手写出大纲.它们是划时代的.他结束说:“请雅可比或高斯公开提出他们的意见,不是对这些定理的正确性,而是对它们的重要性.我希望以后会有人发现,辨读这一堆写得很潦草的东对他们是有益的.满怀激情地拥抱你.E·伽罗华.” 1832年5月30日清晨很早的时候,伽罗华在“决斗场”与他的对手相遇.决斗是在25步的距离用手枪对射.伽罗华倒下了,肠子被射穿.没有医生在场.他被丢在他倒下的地方.9点钟的时候,一个路过那里的农民把他送到科尚医院.伽罗华知道他快死了.在不可避免的腹膜炎开始以前,在他的神志仍然完全清醒的时候,伽罗瓦拒绝了一个神父的祈祷.也许他记起了他的父亲.他的弟弟,他的家人中唯一得到通知的一个,流着泪赶到了.伽罗华努力以一种坚韧精神去安慰他的弟弟:“不要哭,”他说,“我需要我的全部勇气在20岁时死去.” 1832年5月31日上午,伽罗华在他生命的第21个年头去世了.他被埋葬在南公墓的普通壕沟里,所以今天伽罗华的坟墓已无踪迹可寻.他不朽的纪念碑是他所留下来的的著作,共计60页. (摘自《数学大师》)编辑本段群论——跨越时代的创造
  伽罗华死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中.他的论文手稿过了十四年后,也就是1846年,才由法国数学家刘维尔领悟到这些演算中迸发出的天才思想,他花了几个月的时间试图解释它的意义.刘维尔最后将这些论文编辑发表在他的极有影响的《纯粹与应用数学杂志》上,并向数学界推荐.1870年法国数学家约当根据伽罗华的思想,撰写了《论置换与代数方程》一书,他在这本书使里伽罗华的思想得到了进一步的阐述.   伽罗华最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,为了纪念他,人们称之为伽罗华理论.正是这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程.正是这套理论为数学研究工作提供了新的数学工具—群论.它对数学分析、几何学的发展有很大影响,并标志着数学发展现代阶段的开始.   伽罗华非常彻底地把全部代数方程可解性问题,转化或归结为置换群及其子群结构分析的问题.这是伽罗华工作中的第一个“突破”,他犹如划破黑夜长空的一颗瞬间即逝的流星,开创了置换群论的研究,确立了代数方程的可解性理论,即后来称为的“伽罗华理论”,从而彻底解决了一般方程的根式解难题.   作为这个理论的推论,可以得出五次以上一般代数方程根式不可解,以及用圆规、直尺(无刻度的尺)三等分任意角和作倍立方体不可能等结论.   对伽罗华来说,他所提出并为之坚持的理论是一场对权威、对时代的挑战,他的“群”完全超越了当时数学界能理解的观念.也许正是由于年轻,他才敢于并能够以崭新的方式去思考,去描述他的数学世界.也正因如此,他才受到了冷遇.   在这里,我们后人感受到的是一种孤独与悲哀,一种来自智慧的孤独与悲哀.但是,历史的曲折并不能埋没真理的光辉.今天由伽罗华开始的群论,不仅对近代数学的各个方向,而且对物理学、化学的许多分支都产生了重大的影响.   在分送伽罗华的论文之前,他的兄弟和奥古斯特.谢瓦利埃将它们重写了一遍,目的是把那些解释整理清楚.伽罗华阐述他的思想时总是急于求成,不够充分,这种习性无疑地由于他只有一个晚上的时间来概要叙述他多年的研究而更为严重.虽然他们很尽职地将论文抄本送交卡尔.高斯,卡尔.雅可比和其他一些人,但此后10多年,直到约瑟夫.刘维尔在1846年得到一份之前,伽罗华的工作一直未得到承认.   刘维尔领悟到这些演算中迸发出的天才思想,他花了几个月的时间试图解释它的意义.最后他将这些论文编辑发表在他的极有影响的《纯粹与应用数学杂志》上.其他的数学家对此作出了迅速和巨大的反响,因为事实上伽罗华已经对如何去寻找五次议程的解作了完整透彻的叙述……这是十九世纪数学中由一位它的最悲惨遭的英雄创造的一件杰作.   在对论文的介绍中,刘维尔对为什么这位年轻数学家会被他的长辈们拒绝,以及他本人的努力怎样使伽罗华重新受到注意做了反思:   过分地追求简洁是导致这一缺憾的原因.人们在处理像纯粹代数这样抽象和神秘的事物时,应该首先尽力避免这样做.事实上,当你试图引寻读者远离习以为常的思路进入较为困惑的领域时,清晰性是绝对必需的,就像笛卡尔说过的那样:“在讨论超前的问题时务必空前地清晰.”伽罗华太不把这条箴言放在心上,而我们可以理解这些杰出的数学家想必认为,通过他们审慎的忠告所表现的苛刻,设法使这个充满才华但尚无经验的初出茅庐者转回到正确的轨道上来是合适的.   他们苛评的这位作者,在他们看来是勤奋和富有进取心的,他可以从他们的忠告中获益.   但是现在一切都改变了,伽罗华再也回不来了!我们不要再过分地作无用的批评,让我们把缺憾抛开,找一找有价值的东西……   我的热心得到了好报.在填补了一些细小的缺陷后,我看出伽罗华用来证明这个美妙的定理的方法是完全正确的,在那个瞬间,我体验到一种强烈的愉悦.编辑本段附:伽罗华的遗书
  我请求我的爱国同胞们,我的朋友们,不要指责我不是为我的国家而死.   我是作为一个不名誉的风骚女人和她的两个受骗者的牺牲品而死的.我将在可耻的诽谤中结束我的生命.噢!为什么要为这么微不足道的,这么可鄙的事去死呢?我恳求苍天为我作证,只有武力和强迫才使我在我曾想方设法避开的挑衅中倒下.   我亲爱的朋友:   我已经得到分析学方面的一些新发现……   在我一生中,我常常敢于预言当时我还不十分有把握的一些命题.但是我在这里写下的这一切已经清清楚楚地在我的脑海里一年多了,我不愿意使人怀疑我宣布了自己未完全证明的定理.   请公开请求雅可比或高斯就这些定理的重要性(不是就定理的正确与否)发表他们的看法.然后,我希望有人会发现将这一堆东西整理清楚会是很有益处的一件事.   热烈地拥抱你   —— 伽罗华编辑本段评论
  伽罗华的想法是有道理的,但事实这道理只是在探求新知时特别有用.   伽罗华的成就成为整个数学界的成就是一件远比伽罗华想象的更艰难更平常的过程.   galois大脑的验尸报告:   剥去头盖骨的包膜可以看到,年轻人形成冠状物的两块以一个钝角连在一起.这至多有五分之一英寸宽.在冠状物缝合顶骨处的边缘,可以看到进阶两块骨头连接处有一个深的,扁平的圆形凹陷;顶骨封丘发育很好,彼此分得很开;这部分的发育是不寻常的,相对于枕骨来说······   一旦头盖骨被打开,前窦的内壁靠得非常近;剩下的空间小于五分之一英寸;在头盖骨圆顶的中央,对应于上面所述封丘的两个凹陷·········   大脑很重,回旋很大,裂缝很深,特别是在侧面部分;有一些隆起对应头盖骨上的腔;在每个前丘的前部有一个,在上面的顶部有两个;大脑组织一般柔软;脑腔很小,没有体液;垂体腺很大且含有灰色颗粒;小脑很小;大脑和小脑总重量为三磅两又不足八分之一盎司.编辑本段圆周率破案
  伽罗华,他只活了21岁就去世了.不过,他的生命虽然短暂,却对方程的理论作出了杰出的贡献.不但如此,关于他还有一个用圆周率破案的传奇.   这天,伽罗华得到了一个伤心的消息,他的一位老朋友鲁柏被人刺死了,家里的钱财被洗劫一空.而女看门人告诉伽罗华,警察在勘察现场的时候,看见鲁柏手里紧紧捏着半块没有吃完的苹果馅饼.女看门人认为,凶手一定就在这幢公寓里,因为出事前后,她一直在值班室,没有看见有人进出公寓.可是这座公寓共有四层楼,每层楼有15个房间,共居住着一百多人,这里面到底谁会是凶手呢?   伽罗华把女看门人提供的情况前前后后分析了一番:;鲁柏手里捏着半块馅饼,是不是想表达什么意思呢?伽罗华忽然想到:馅饼,英文里的读音是“派”,而"派"正好和表示圆周率的读音相同.而鲁柏身前酷爱数学,伽罗华知道,他经常把圆周率的近似值取成3.14来做计算.“派”——3.14,鲁柏会不会是用这种方法来提示人——杀害他的凶手的房间号正是314呢?   为了证实自己的怀疑,伽罗华问女看门人:“314号房间住的是谁?”   “是米赛尔.”女看门人答道.   “这个人怎样?”伽罗华追问到.   “不怎样,又爱喝酒,又爱赌钱.”   “他现在还在房间吗?”伽罗华追问得更急切了.   “不在了,他昨天就搬走了.”   “搬走了?”伽罗华一呆,“不好,他跑了!”   “你怀疑是他干的吗?”女看门人问.   “嗯,如果我没有猜错的话,他一定就是杀害鲁柏的凶手!”   伽罗华向女看门人讲述了自己的推理过程,他们立刻把这些情况报告了警要求缉捕米赛尔.米赛尔很快被捉拿归案,经过审讯,他果然招认了他因见财起意杀害鲁柏的全过程.就是这半块馅饼,让鲁柏在被害之际还提供了凶手的线索,并被伽罗华注意到,从而抓到了真凶.

rtffgnfvguh

数学家的故事:高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100...

全部展开

数学家的故事:高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才
科学家的故事:牛顿 少年时代的牛顿不像高斯、维纳那样,从小就显露出引人注目的科学天才;也不像莫扎特那样表现了令人惊叹的艺术禀赋。他跟普通人一样,轻松愉快地度过了中学时代。
如果说他和别的孩子有什么不同的话,那就是他的动手能力相当强。他做过会活动的水车;做过能测出准确时间的水钟;还做过一种水车风车联动装置,它使风车可以在无风时借助水力驱动。
15岁那年,一场罕见的暴风雨侵袭英格兰。狂风怒吼,牛顿家的房子直晃悠,就像要倒了似的。牛顿为大自然的威力迷住了,不禁想测验飓风的力量。他冒着狂风暴雨来到后院,一会儿逆风跑,一会儿顺风跳。为了接受更多的风力,他索性敞开斗篷向上跳跃,认准起落点,仔细量距离,看狂风把他吹出多远。
1661年牛顿考上了剑桥大学,尽管在中学里是个优等生,可是剑桥大学集中了各地的尖子学生,他的学习成绩赶不上别人,特别是数学的差距更大。但是他并不气馁,就像他少年时代喜欢思考问题一样,踏踏实实地学习,直到透彻地理解为止。
在大学的头两年里,他除学习算术、代数、三角外,还认真学习了欧几里得《几何原本》,弥补了过去的不足。他又钻研笛卡儿的《几何学》,熟练地掌握了坐标法。这些数学知识,为牛顿后来的科学研究打下了坚实的基础。
四年后,他从剑桥大学毕业了。1666年的一天,牛顿请母亲和弟妹到自己房间里来。房间里黑洞洞的,只从窗子的一个小孔中透过一线阳光,在墙上照出一个白色的光点。牛顿让他们注意看墙上的光点。他手里拿着自制的三棱镜,放在光线入口处,使光折射到对面墙上,光点附近突然映出一条瑰丽的彩带。这条彩带同雨后晴空中出现的彩虹一样,由红、橙、黄、绿、青、蓝、紫等七种颜色组成。牛顿和自己的亲人共同观赏了人工复现的自然景象。后来,牛顿又用第二个三棱镜把七种单色光合成白光。他用白光分解实验宣告了光谱学的诞生。
牛顿在探索光色之谜的同时,还在探索引力之谜。他从苹果从树上掉了下来的事实发现万有引力定律,而且从数学上论证了万有引力定律,并且把力学确立为完整、严密、系统的学科。他在概括和总结前人研究成果的基础上,通过自己的观察和实验,提出了“运动三定律”。这三条定律和万有引力定律共同构成了宏伟壮丽的力学大厦的主要支柱。这座力学大厦是近代天文学和力学发展的基地,是机械、建筑等工程技术发展的基地,也是机械唯物论统治自然科学领域的基地。构造了宏伟壮丽的力学大厦。

收起