★设数列{an}的前n项和Sn=(4/3)an-(1/3)*2^(n+1)+2/3,n=1,2,3…(1):求首项a1和通项an;(2):设Tn=2^n/Sn,n=0,1,2…,证明:T1+T2+T3+…+Tn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 09:08:51
x͒_oPBIi{o/%Kɶ8؆-m14K8,<<4Y/&3>t{N߹ sڜ|/fOͦ}2Dіl"8o\lPaE$,ikQ_7{ Z{flPÀ`NY8ǔe*
49[٠E,edcYvVdXצJIwdYXEr,0t# C=nf7Zo:JըͷN}E
(wQX]]>܇šQ2Z9!1zŧÑr`^
F-+MNyg)I4xr)]\/rيwnCY(VP)E˅bP(UJeٱVG"K¢vKWE|PU\3ŞbR0(|_] =)ɤIw=鮆'M_Cߠ ]˅$.icSM9u&lIz5]ດr`
β
★设数列{an}的前n项和Sn=(4/3)an-(1/3)*2^(n+1)+2/3,n=1,2,3…(1):求首项a1和通项an;(2):设Tn=2^n/Sn,n=0,1,2…,证明:T1+T2+T3+…+Tn
★设数列{an}的前n项和Sn=(4/3)an-(1/3)*2^(n+1)+2/3,n=1,2,3…
(1):求首项a1和通项an;
(2):设Tn=2^n/Sn,n=0,1,2…,证明:T1+T2+T3+…+Tn
★设数列{an}的前n项和Sn=(4/3)an-(1/3)*2^(n+1)+2/3,n=1,2,3…(1):求首项a1和通项an;(2):设Tn=2^n/Sn,n=0,1,2…,证明:T1+T2+T3+…+Tn
1.a1=2,an=4^n-2^n(4的n次方减2的n次方)(用改变足标相减法和不动点法易求出)
2.代入得Sn=(1/3)*4^(n+1)-2^(n+1)+2/3
以下步骤我写好后用相片传上来,见图片,放大后可见.
设{an}是正项数列,其前n项和Sn满足4Sn=(an-1)(an+3) ,则数列{an}的通项公式= __
数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn
设数列an的前n项和为Sn,若Sn=1-2an/3,则an=
等比数列证明题设数列an的前n项和为Sn,且Sn=4an-3怎么证明数列an是等比数列
设Sn是数列{an}的前n项和,a1=a,且Sn^2=3n^2an+S(n-1)^2,证明数列{a(n+2)-an}是常数数列设Sn是数列{an}的前n项和,a1=a,且Sn^2=3n^2an+S(n-1)^2,an≠0,n=2,3,4……证明数列{a(n+2)-an}(n≥2)是常数数列
设数列{an}中前n项的和Sn=2an+3n-7则an=
设数列{an}中前n项的和Sn=2an+3n-7,则an=
已知数列an中,a1=2,an+1=4an-3n+1,求证数列{an-n}为等比数列设{an}的前n项和Sn,求S(n-1)-4Sn的最大值
设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列
关于数列的几道题啊、若数列{an}的通项an=(2n-1)3n(n是n次方),求此数列的前n项和Sn求数列1,3+4,5+6+7,7+8+9+10……前n项和Sn数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n(1)设
已知数列{an}的前N项和为Sn 且an+1=Sn-n+3,a1=2,设Bn=n/Sn-n+2前N项和为Tn 求证Tn 小于4/3
设Sn为数列{an}的前n项和,且Sn=3/2(an-1),(n∈N),求数列an的通项公式 bn=4n+3 求an与bn的公共项cnRT
设数列{an}的前n项和Sn=4/3an-{(1/3)*2^n+1}+2/3求该数列的通项
设数列的前n项和为Sn,已知a1=1,an+1=(n+2/n)*Sn,(n=1,2,3,...) 1,求证Sn/n是等比数列 2,Sn+1=4an
设数列{an}的前n项和Sn=2(an-3),证明{an}为等比数列,并求通项公式
设数列{an}的前n项和Sn=4/3an-2/3,(n属于N+)求首项a1与通项an
设数列{an}的前n项和为Sn,已知首项a1=3,且Sn+1+Sn=2an+1,试求此数列的通项公式an及前n项和Sn
设数列An的前n项和为Sn,且a1=1,An+1=1/3Sn,求数列an的通项公式.