已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D(1)求证:AA'=A'B=BB'(2)求梯形AB'C'C的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:02:57
已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D(1)求证:AA'=A'B=BB'(2)求梯形AB'C'C的面积
xՒNA_n3L&0{U֘xA!!rHpS` }MLEc Wƫ3taܿ< e[K¤suyD0ReCJ&P?-đ഍pWYxp-1'$umDͻIVFfX NQ% CÀno"Fm9 ?_ӹQ,ܣ'=8P`T* |)_LF~3l6쐘QR!@T/gҀ"@%V4e4 K.สb)긖#芤# h;,ɇ܉EgQ%mST-`ntMv\wd?7_UW돝뷓\|U\*{ir>IZP]Et^,h2o(@xgcmTr4cM+*7nC9"ίԦP"

已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D(1)求证:AA'=A'B=BB'(2)求梯形AB'C'C的面积
已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D
(1)求证:AA'=A'B=BB'
(2)求梯形AB'C'C的面积

已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D(1)求证:AA'=A'B=BB'(2)求梯形AB'C'C的面积
设A‘EBC相交于O,
A‘E’经过BC的中点O,A‘E’∥AC,
∴OA’是ΔABC的中位线,∴AA‘=A’B,
∵平移的距离相等,∴AA‘=BB’,
∴AA‘=A’B=BB‘.
⑵根据勾股定理得:AB=5,
过C作CD⊥AB于D,则SΔABC=1/2AC*BC=1/2AB*CD,∴CD=12/5,
由平移性质得:CE=AA’=1/2AB=5/2,
AB‘=3AA’=15/2,
∴S=1/2(5/2+15/2)×12/5=12.

已知如图在RT△ABC中,∠ACB=90°,CA=CB 已知如图在RT△ABC中,∠ACB=90°,CA=CB 已知如图在Rt△ABC中∠ACB=90°CE⊥AB垂足为D 求证:∠A=∠DCB 已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,求∠A=∠DCB 如图,已知:在Rt△ABC中,∠ACB=90°∠B=30°,CD⊥AB于D.求证:AD=¼AB. 如图,已知:在Rt△ABC中,∠ACB=90°∠B=30°,CD⊥AB于D.求证:AD=¼AB. 如图 在rt △abc中 ∠acb=90°,cd垂直ab于d,已知ad=4,bd=1求cd的长 已知如图,在Rt△ABC中,∠ACB=90°,CD垂直AB于D,AB=13,BC=5,求CD的长. 如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,说明AC^2/BC^2=AD/DB. 已知如图在RT△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交于E点,求∠AEB的度数. 已知:如图,在Rt三角形abc中,∠acb=Rt∠,∠a=30°,cd⊥ab于点d,求证三角形abc相似三角形cdb已知:如图,在Rt三角形abc中,∠acb=Rt∠,∠a=30°,cd⊥ab于点d,求证三角形abc相似三角形cdb 已知:如图,在Rt三角形ABC中,∠ACB=Rt∠,AC=4,BC=3,求证:四边形EGFH是平行四边形图是对的。抱歉抱歉抱歉,题目应该是:已知:如图,在Rt三角形ABC中,∠ACB=Rt∠,AC=4,BC=3,将三角形ABC平移到三角形A'B'C', 如图,在Rt△ABC中,∠ACB=90°,D,E是AB上的点 已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D (1)求已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D(1)求证:A 已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D (1)求已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D(1)求证:A 如图,已知在Rt三角形ABC中,角ACB=90°,AC=12,BC=5, 已知,如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD、AE分别平分∠ACB、∠BAC,且相交于点F.求证:AE:AF=根号2 已知,如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD、AE分别平分∠ACB、∠BAC,且相交于点F.求证:AE:AF=根号2