注意是“初一数学小论文范文”

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:25:54
注意是“初一数学小论文范文”
x[Ysy+=$ fg?׿-^HyUjz,ߪݣS:Kϝ®箌bV}Jф:\p:WO:cɮAY++[/V!oH]"/Y/fZ3~=ycp6enySvrhj5f ?6"]0~ӿ+p,a')b'x%Erqq z7jvJO4U #Y8iq ,)6:rl-8k31I{*_|6Vc|W ,EltR,.C [6`jz^LQ0cncMUj*{TϽ؄< hg.ur@pt}~cl6V|$U*&;Z1DVi`H_.;t'j/vQ^gz 3ƨvø NFetN2>l-VT~ ydL7X >%d>yj%aV][8pBn?RbE' l 9-/z1P>ί2/ W ت\)4m@7XSs^ȱ1/a}:^\xnI ooI| =i4|>c 0,fS]ZǜW洚v&Nƌ/U) ^G~p/iƢLdqWpFK^dl^nVn`[ͥ>nZ~{ KlтX;8yQvE\԰1;(aslvǠIE0Rس#'JFwՀ8܅ {CX7 B._{~-0I/wwvLnAgpܽT;DNpĖ< )5ye$mmB*C C8vi/ʚ%qrr2dff/0!r;"bM 8x4Ew'M/i{C׵]FxPx99jrCP7Ͻ o 3-IDSnXM ! ~T5l Y8AUI6.5(#1>nf}7ƀ01㼾Kl#H0`׶섨oO_ P gH8u'jV79pgeƨXNJI?dzi-D4^ԺZsl&iBŻ cepѦ J,f]`G xˆlkiWHڂm~t۹Iyx<6uʒꇉG,3Ai[ `() 9ɿmѪov~K=!d23mpF֔ ؏+ҌOSLxJU>3I{g몰.ȵP%28RH1Еl`oȘUQNRKcMҰA@I-`E-% a gmh̪E[S,@Q` URl{ j"+s.nk~E*o%TN)DiRc uP>į6 FMhv:4DZfU=Q#9d]^{ର(`^u6'+оWnZ)Z \]A9@\ٙozW,a  )XG!qVZx<+!t*^ejź uJ3jr3S=xr3 xYIr.49. bH;^YΙroB`SbYCqo̙4sDP [VmSoi mV|㼙b JnkB^[{)bզD;@3ܾfM,HTyg_ 4XewʫJsD\>ڮ6ψ xοUUޛUor!|m<劗3ż[K=W0V) `ϼT6\]M<7ͯ<3E1xU;Vk9%qP¡܀@P+=]H\'!ѣYݡ$GK6IL SD "uқ[R3 3v ȋ9_!wg*n؟FPc>{̼BX5ƙÎEWDQqBof s&(DSeXu^oy/ȳ8+5sTlcEQJ5ᶄ"(P }/!y?zfNA}ubaV12kC]bO@բ.x2EJy[t_5$ڐ7yԺhncə?Ǧd3$A6.kkdKl ]#Bm3rIWz@/N)pZhjCg4Dj:n::E:WsO~Q? K|(:5&.Ҙ9XsUK4%& !2'% H,C0)Ƥ {ԫ^alRE)Z?ꔝ#j ɖn@L+J!,m{]23rN3ɖ qpPA|a$G` 9>3Ѥ>}} Lucv<~thLlz .n<jv2ǜJ-e{d3jlB*3(@+uOnugxB-sgfgv@c4|l >ÚOPF(B21d9mx9yެnPdI.;Rkg+ϋus5w*<z Y˧s~jBo[;c<ѴdHXVx 5(0MY5PkOu-7V<ݒf/rΟ0h$c}8.KnUIcm08K˫ T>|h}{{(Zu٦=Wu|k"p'jAaX83䮠Rk6aVa*9}C3'ت-p`ȱWgKc`!|53-gCig tX2ȅjD'/, I$ZmbUsōY]ԍL88u>9YcP與Q*GA*M a/1.m>;%(殳522} j;Mk6m>V<]Tm9@hfXJ51ϓc[AsDyYS! D;yIwcy`Ҙư_|Ldfe:|9)36L-pOtDz :y= {hB 윤&8Hdtؾ3l,ِ#]™x* v/m{7ĝ_>є7pww؏B5{Uɶz8ez{`&P5Zl*ilzn ٬z1Ooꤻ.B&+BAh'e"YHºnvCa_9_9J)hHZI 0Գ{rNrxUuaзD$bۡ:׺i]I( [u '+HLBr@B%c7c5bY@CJ :ZawXK3SgHW\Cb/".;W.#{#~M}%^`9ĭxӛYHwxpeɇbH%ƣHLVt"tTME83)AtƺJ[?œQP0/9KgzBŠN =m Vx"{#$äĢi~ RBZ|?)| .t  ku`\KB}^W¢ By: Y$◃P,ӟ KBZBH}oţm\۪KPB:(dʨaߣNZ#`yӓLuL0&`ݲ~֓!kbkS F`AK$& m;n?ymzÇÝo;xnd]PO<`{RpE+MR$.6$wEpbTRI&zcT-D"' VweG[Zl1@ۂ'A6kۅoY1lG IXe ^֓C ?: N!Ri8j ~>z^owZ~~4KDA?h} }e0X~}HcCw~+|_nK@IoRe8B%BJ"K#)J ImZxƢXޯG5 (2{ɸFzBGCuApq`IGڧPXi [@~(Y1DžJ6wavL(yЗxO w%J"8{ R2L4juH*YD:PfOiĘj݅3&j'x!^2Ha!l}a3pϷw%`>BoûmQZ/F=aY[4ř$}Ӵ[,6ުH[

注意是“初一数学小论文范文”
注意是“初一数学小论文范文”

注意是“初一数学小论文范文”
数学小论文一
关于“0”
0,可以说是人类最早接触的数了.我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量.”这样说显然是不正确的.我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点.而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的.2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等.”
“任何数除以0即为没有意义.”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少.一个整体无法分成0份,即“没有意义”.后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数).从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”.
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同.105、2003年中的0指数的空位,不可删去.203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去.0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的.”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人.作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”.
数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”
这样的说法可不对.因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象.
历史上,关于什么是数学的说法更是五花八门.有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代.”
那么,究竟什么是数学呢?
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断.恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”.根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学.
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学.
纯粹数学也叫基础数学,专门研究数学本身的内部规律.中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学.纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式.例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系.
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分.应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁.大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征.
高度的抽象性是数学的显著特征之一.数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的.例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可.现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展.根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学.
体系的严谨性是数学的另一个显著特征.数学思维的正确性表现在逻辑的严谨性上.早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣.所以,数学一直被誉为是“精确科学的典范”.
广泛的应用性也是数学的一个显著特征.宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学.20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门.不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科.
各门科学的“数学化”,是现代科学发展的一大趋势.
祝:学习进步!

数学小论文一
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,...

全部展开

数学小论文一
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

收起

Easy to overlook the answer"
Fact is stranger than fiction, we also have many interesting mathematical kingdom. For example, in the ninth book, I now have a problem in the workbook, education, sai...

全部展开

Easy to overlook the answer"
Fact is stranger than fiction, we also have many interesting mathematical kingdom. For example, in the ninth book, I now have a problem in the workbook, education, said: "this is a passenger train to the west, the east from 45 kilometers per hour line, stop, then after 2.5 hours just what the halfway point of the two cities from 18 km, two things WangXing? How many kilometres from town with the small English in this problem, the calculation method and the results are not the same. XingSuan king of the number of kilometers than small calculates km less, but the results of the two to say. This is why? You want to come? You count them two listed in the results." Actually, this problem is we can very quickly made a kind of method is: 45 x 2.5 = 112.5 (km), 112.5 + 18 = 130.5 (km), 130.5 * 2 = 261 (km), but look close scrutiny, he felt something was wrong. Actually, here we overlooked a very important conditions, "this is just what the halfway point of the city from the conditions of 18 kilometers away from" the word ", not to say, or more than halfway point. If it is not from the middle point to 18 kilometre, column type is the front, if is a kind of more than 18 kilometers halfway, column type should is 45 by 2.5 = 112.5 (km), 112.5-18 = 94.5 (km), 94.5 x 2 = 189 (km). So the correct answer is: 45 x 2.5 = 112.5 (km), 112.5 + 18 = 130.5 (km), 130.5 * 2 = 261 (km) and 45 x 2.5 = 112.5 (km), 112.5-18 = 94.5 (km), 94.5 x 2 = 189 (km). Two answers, i.e. WangXing answers with the small English answer is full.
In the daily learning, often have many problems, aim to answer is more in practice or neglected in the exam, we need to carefully examines the topic is, life experience, close scrutiny, correct understanding of cet4. Otherwise easily overlooked the mistake, the biased.
About "0"
0, it is the earliest human contact number. Our ancestors started only know no and have no is 0, 0, so did? Remember the elementary school teacher once said, "any number of minus itself is equal to 0, 0 means without number." That is simply not true. We all know that the 0 degrees centigrade thermometer said the freezing point of water (i.e. a standard under the pressure of the mixture of water temperature), including 0 is solid and liquid water differentiator. But in Chinese characters, 0 means that a zero, such as: 1 more pieces), Decimal purpose. 2) not certain units... Thus, we know that the "no amount is 0, but not without number, 0 solid and liquid said the differentiator, etc."
"Any divided by 0." no significance for This is the primary school teacher still talking to a conclusion about the "0", then the division (primary) is divided into several copies will be a, how much each. A whole cannot into a "0" no significance. Then I realized the a / 0 0 0 to limit can be expressed in the variable (a variable in the process of changing its absolute than any small forever is positive), shall be equal to a variable in the infinite (changes in its absolute than any big is positive). Get a theorem about 0 "zero limits of variables, called an infinitesimal".

收起