Does the series converge?If it does,try to find the sum∑n=1→∞ n/2^n 题就是这样~如果有字的话最好是英文

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:37:19
Does the series converge?If it does,try to find the sum∑n=1→∞ n/2^n 题就是这样~如果有字的话最好是英文
xŒk@0HH4Dܛ 䒻4Q{I"Cq/ZDf- E_ʒkvj2|s=s߻{rR , EEK:Š PgmE9khV9j?;,'ߞ/?_o^?2xQ_NJGbaM=g&a$MZx{Uk M<dYiqeQ$ku;AHI xtu- ;!61 HN(m٦ZoШ7fy-l6}d4<^v./9bMԆȵ-bM >3Í|wG-eyΒ2^ly?8PPAbD #VTUU$ހXR'wo̐Pe(U~E`c)hqF R<g|f']´j[Kc~g

Does the series converge?If it does,try to find the sum∑n=1→∞ n/2^n 题就是这样~如果有字的话最好是英文
Does the series converge?If it does,try to find the sum
∑n=1→∞ n/2^n 题就是这样~如果有字的话最好是英文

Does the series converge?If it does,try to find the sum∑n=1→∞ n/2^n 题就是这样~如果有字的话最好是英文
其实这题可以等化为求和.
Answer:
It does.
∵∑n=1→∞ n/2^n
=1/2^1+2/2^2+3/2^3+...+(n-1)/2^(n-1)+n/2^n,(1)
∴(∑n=1→∞ n/2^n)/2
=1/2^2+2/2^3+3/2^4+...+(n-1)/2^n+n/2^(n+1),(2)
∴(1)-(2),(∑n=1→∞ n/2^n)/2
=1/2+1/2^2+1/2^3+...+1/2^n-n/2^(n+1)
=(1/2)[1-(1/2)^n]/(1-1/2)-n/2^(n+1)
=1-(1/2)^n-n/2^(n+1)
=1-2/2^(n+1)-n/2^(n+1)
=1-(2+n)/2^(n+1),
∴∑n=1→∞ n/2^n =2-(2+n)/2^n
the sum is:
2-(2+n)/2^n.