什么是杠杆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:03:02
什么是杠杆
xY[kI+!HDl̄<iavaYYXe[VK.eK$˲uqȒZ'IWuS~Nw(a`S;󟿶-ԑ}Y[{_篟/S8N8^{UweXNͰD{YK>ӸEJ.FN.{=h̴5.r:]iJ<4{Xq=4su-7 W;nXήx&sy٣5lɯ鶵)iC{+'ĨtohTqwԏΚl8A,e%Xלվgm+8[65w_ܷ'ۢu,iDg GB7bZ4E'۽SMdۣ _5%Yc&@=Ȳ(s)Ľ 8V"^u˔sPYAs {P@ꑭ&KJq ז0\n1,̊gv;= AV{aE6I۱&3* S훲0v#C1&VeGp +5E(:wv)ވ{I%SDmjLannda!/Tqw$m~-ʧoEwܛ_uN29,X8Ynoأ Y0{%eb׳N_aD$/AE(4FtF97,R)*ECaX\M5=붻d jqKa9R'dOӶU1]׸0t Pp5W<BC0cH4RJ.SRGdw$Vda'MyQ:lgbt|7uHM{loPFZs:^mO $u#qXFspަ^ۿΕlÔG^98mCdeu$?3AgM hBrw1/N"C,oI{yrr6NsX] :źnfסATQ9 uN,ԕjF!t.Q78e?RiyŞz_4OAQ6!,f1b!2D) xNy&m0_RQRb3sL"S`9EA= %Gw]%)ԧ&0a5Iu1XmzN-<)Ó~ؚe<'*a Ix3HL1 8FaI;avyhڡ-hH |wcSSygw!+k eu MT B)Kw]B$Fnthn`ȼn @%a;]q- uoFР=#Թ3g|˼h?K= F]4M gL4.d+O1p =4JhU1C~̱=AX%lID^eA9Ƃ + dYѺ9M7CBIDmBs0@h@;ʀh/ߔ{fAMn IEt" !z|nUnI^@ [d;Dz})8dv]'o 2te͉.YFykXx |u/h:BG+w$N:qC#jd@ Pa ,?u /(1 \E<^bڣ29{\vG^|*_Ws%3n'㟀-T(?Ɠn{ _b2ք'W` rL ߿U<ӟ.aJ(A왾D:4FD?.$T9%9;\5n#r a~ۣuؓݲJCbxTਾCs W1(s9=̹kѬ?vA%P^2t천a~2]N`nqA7V;5PuvvT $>\OrA Iފt+3049lV^=Q#W]I2UDjH! בٓD%&F#msؓžDR^6`d?DtȘ{Fb>AI5NS=st!GqD074Ǿb/='D"EW ;ӌ{E2ĖƖB6s1{so雛pX^Ͻ)>g٣K*OjBZV_v- 0h'EL* !ʽWg3 VQ~2sd&;q[>dn%'5tX˔}u1a+He8—j/3wc4ԏ?Eg]

什么是杠杆
什么是杠杆

什么是杠杆
在力的作用下如果能绕着一固定点转动的硬棒就叫杠杆.在生活中根据需要,杠杆可以做成直的,也可以做成弯的.
阿基米德[1]在《论平面图形的平衡》一书中最早提出了杠杆原理.他首先把杠杆实际应用中的一些经验知识当作"不证自明的公理",然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理.这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变.相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替;似图形的重心以相似的方式分布……正是从这些公理出发,在"重心"理论的基础上,阿基米德又发现了杠杆原理,即"二重物平衡时,它们离支点的距离与重量成反比."
阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进了一系列的发明创造.据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅船顺利下水.在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久.
这里还要顺便提及的是,在我国历史上也早有关于杠杆的记载.战国时代的墨家曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的.这两条对杠杆的平衡说得很全面.里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的.这样的记载,在世界物理学史上也是非常有价值的.
[编辑本段]杠杆的定义
杠杆是一种简单机械.
在力的作用下能绕着固定点转动的硬棒就是杠杆(lever).
跷跷板、剪刀、扳子、撬棒等,都是杠杆.
滑轮是一种变形的杠杆,且定滑轮是一种等臂杠杆,动滑轮是一种动力臂是阻力臂的两倍的杠杆
[编辑本段]杠杆的性质
杠杆绕着转动的固定点叫做支点
使杠杆转动的力叫做动力
阻碍杠杆转动的力叫做阻力
当动力和阻力对杠杆的转动效果相互抵消时,杠杆将处于平衡状态,这种状态叫做杠杆平衡,但是杠杆平衡并不是力的平衡.
杠杆平衡时保持在静止或匀速转动.
通过力的作用点沿力的方向的直线叫做力的作用线
从支点O到动力F1的作用线的垂直距离L1叫做动力臂

从支点O到阻力F2的作用线的垂直距离L2叫做阻力臂
[编辑本段]杠杆平衡条件
使用杠杆时,如果杠杆静止不动或绕支点匀速转动,那么杠杆就处于平衡状态.
动力臂×动力=阻力臂×阻力,即L1F1=L2F2,由此可以演变为F2/F1=L1/L2
杠杆的平衡不仅与动力和阻力有关,还与力的作用点及力的作用方向有关.
[编辑本段]生活中的杠杆
杠杆是一种简单机械;一根结实的棍子(最好不会弯又非常轻),就能当作一根杠杆了.上图中,方形代表重物、圆形代表支持点、箭头代表用,这样,你看出来了吧?在杠杆右边向下杠杆是等臂杠杆;第二种是重点在中间,动力臂大于阻力臂,是省力杠杆;第三种是力点在中间,动力臂小于阻,是费力杠杆.
费力杠杆例如:剪刀、钉锤、拔钉器……杠杆可能省力可能费力,也可能既不省力也不费力.这要看力点和支点的距离:力点离支点愈远则愈省力,愈近就愈费力;还要看重点(阻力点)和支点的距离:重点离支点越近则越省力,越远就越费力;如果重点、力点距离支点一样远,如定滑轮和天平,就不省力也不费力,只是改变了用力的方向.
省力杠杆例如:开瓶器、榨汁器、胡桃钳……这种杠力点一定比重点距离支点近,所以永远是省力的.
如果我们分别用花剪(刀刃比较短)和洋裁剪刀(刀刃比较长)剪纸板时,花剪较省力但是费时;而洋裁剪则费力但是省时.
1.剪较硬物体
要用较大的力才能剪开硬的物体,这说明阻力较大.用动力臂较长、阻力臂较短的剪刀.
2.剪纸或布
用较小的力就能剪开纸或布之类较软的物体,这说明阻力较小,同时为了加快剪切速度,刀口要比较长.用动力臂较短、阻力臂较长的剪刀.
3.剪树枝
修剪树枝时,一方面树枝较硬,这就要求剪刀的动力臂要长、阻力臂要短;另一方面,为了加快修剪速度,剪切整齐,要求剪刀刀口要长.用动力臂较长、阻力臂较短,同时刀口较长的剪刀.
[编辑本段]投资中的杠杆
杠杆比率
认股证的吸引之处,在于能以小博大.投资者只须投入少量资金,便有机会争取到与投资正股相若,甚或更高的回报率.但挑选认股证之时,投资者往往把认股证的杠杆比率及实际杠杆比率混淆,两者究竟有什么分别?投资时应看什么?
想知道是否把这两个名词混淆,可问一个问题:假设同一股份有两只认股证选择,认股证A的杠杆是6.42倍,而认股证B的杠杆是16.22倍.当正股价格上升时,哪一只的升幅较大?可能不少人会选择答案B.事实上,要看认股证的潜在升幅,我们应比较认股证的实际杠杆而非杠杆比率.由于问题缺乏足够资料,所以我们不能从中得到答案.
杠杆比率=正股现货价÷(认股证价格x换股比率)
杠杆反映投资正股相对投资认股证的成本比例.假设杠杆比率为10倍,这只说明投资认股证的成本是投资正股的十分之一,并不表示当正股上升1%,该认股证的价格会上升10%.
以下有两只认购证,它们的到期日和引伸波幅均相同,但行使价不同.从表中可见,以认购证而言,行使价高于正股价的幅度较高,股证价格一般较低,杠杆比率则一般较高.但若投资者以杠杆来预料认股证的潜在升幅,实际表现可能令人感到失望.当正股上升1%时,杠杆比率为6.4倍的认股证A实际只上升4.2%(而不是6.4%),而杠杆比率为16.2倍的认股证B实际只上升6%(而不是16.2.%).
阿基米德的“理想”
阿基米德进行过力学方面的研究,并将其运用于杠杆和滑轮的机械设计.
据说,为了宣扬其研究成果而夸口说:“给我一个支点,我可以撬动地球.”
虽然,他没有搬动地球,却用滑轮移动了大船.
设支点在地球外1万米处,如果一个在地球上可提起60kg的物体,则需要在支点外的1x10^18(18次方)km处才能搬动地球,地球质量6x10^24(24次方)kg.
1个天文单位为地球到太阳之间的平均距离,即1A.U.=1.5x10^8(8次方)km,一光年为光在一年前进的距离,1L.Y.≈ 9.5x10^12(12次方)km.
· 支点在地球外10km(1万米)处,这是个难题.
· 11亿光年,远远超出了我们所在的银河系,也越过了从宇宙能得到信息的极限.
——这就是阿基米德的“理想”.

玩过跷跷板吗?那就是一个特殊的杠杆。它两臂是等长的。一般我们要的杠杆都是不等臂的。

在力的作用下能绕着一固定点转动的硬棒就叫杠杆,不一定是直的棒