已知圆过定点F(p/2 ,0),且与直线x=-p/2 相切,其中p>0 ,求动圆圆心的轨迹方程.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:52:44
xN@_eH&B>@
?&jB.Q hδoiѥ&]4g3yU{UwDO1-Gh6M*po,,jU
g1=K()iTB}߸¾_1=OY8˔Aiv6U$kwe#Fu:AÄU%1%jMNղc_#F
1
j)BTɌ6Ee3еЛI쀏Sh=`cо]Ofu,{xp9fl ;8$
已知圆过定点F(p/2 ,0),且与直线x=-p/2 相切,其中p>0 ,求动圆圆心的轨迹方程.
已知圆过定点F(p/2 ,0),且与直线x=-p/2 相切,其中p>0 ,求动圆圆心的轨迹方程.
已知圆过定点F(p/2 ,0),且与直线x=-p/2 相切,其中p>0 ,求动圆圆心的轨迹方程.
设动圆圆心的坐标为(x,y)
则圆心到定点的距离 与 到直线的距离相等 (都为半径长)
根据抛物线的定义,
可知此动圆圆心的轨迹为抛物线.
定点为(p/2,0),定直线为x = -p/2,p>0
说明焦点在x轴上,顶点在原点,抛物线开口方向右,焦点到定直线的距离为p.
则动圆圆心的轨迹方程为y² = 2px,p>0
已知圆过定点F(p/2 ,0),且与直线x=-p/2 相切,其中p>0 ,求动圆圆心的轨迹方程.
已知直线L:mx-(m^2+1)y-4m=0(m∈R)和圆C:x^2+y^2-8x+4y+16=0(1)证明直线L恒过定点,并求定点坐标(2)判断直线L与圆C的位置关系动圆P过定点F(1,0)且与直线x=-1相切,圆心P的轨迹为曲线C,过F作曲线C两条互相垂
已知抛物线C:y^2=2px(p>0)的焦点为F,直线L过定点A(4,0)……已知抛物线C:y^2=2px(p>0)的焦点为F,直线L过定点A(4,0)且与抛物线交于P Q两点,且以弦PQ为直径的圆恒过原点.1.求P2.若向量FP+向量FQ=向量FR,
已知动圆过定点F(0,2),且与定直线l:y=-2相切.(1)求动圆圆心的轨迹C的方程;(2)若P是轨迹C上的一个动...已知动圆过定点F(0,2),且与定直线l:y=-2相切.(1)求动圆圆心的轨迹C的方程;(2)若P是轨迹C上的
已知定直线L:x=-1,定点F(1,0),圆P经过F且与L相切.求点P的轨迹方程
已知直线l过定点A(4,0)且与抛物线C:y²=2px(p>0)交于P、Q两点,若以PQ为直径的圆恒过原点O,求p的值.
已知圆x的平方加y的平方=8,定点p(4,0)求过点p且与圆相切的直线.
已知定点P(Xo,Yo)不在直线l:f(X,Y)=0上,则f(Xo,Yo)-f(X,Y)=0 表示的是一条什么线A 过点P且与l垂直的直线 B过点P且与l平行的直线C不过点P且与l垂直的直线 D不过点P且与l平行的直线希望能够给出
已知动圆与直线X=-1相切,且过定点F(1,0)动圆的圆心为M,1求点M的轨迹C的方程2若直线过点(5,0)且与曲线C已知动圆与直线X=-1相切,且过定点F(1,0)动圆的圆心为M,1.求点M的轨迹C的方程2.若直线过点
已知动圆M过定点F(2,0),且与直线X=-2相切,动圆圆心M的轨迹为曲线C,若过(2,0)且斜率为1的直线与...已知动圆M过定点F(2,0),且与直线X=-2相切,动圆圆心M的轨迹为曲线C,若过(2,0)且斜率为1
已知定点O(X1,Y2)不在直线L:f(x,y)=0上,则f(x,y)-f(X1,Y10=O表示一条( )A.过P点且与L垂直的直线 B.过P点且与L平行的直线C.不过P点且与L垂直的直线 D.不过P点且与L平行的直线
已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上,该动圆圆心轨迹M的方程为y^2=4x设过点P,且斜率为...已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上,该动圆圆心轨迹M的方程为y^2=4x设过
1.已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且向量QP*QF-FP*FQ=0,动点P的轨迹为C,已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于AB两点,设||DA|=L1,|DB|=L2,
已知两定点A(-1,2)M(1,0),动圆过定点M,且与直线x=-1相切,求动圆圆心的轨迹方程
已知椭圆C:x2/a2+y2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:(x-3)2+(y-1)2=3相切.(1)求椭圆C的方程.(2)若不过点A的动直线L与椭圆C交于P、Q两点,且向量AP乘以向量AQ=0求证:直线L过定点,并求出该定点
已知点P到点F(2,0)的距离比它到直线X+4=0的距离小2,若记点P的轨迹为曲线C问:若直线L与曲线C相交于A.B两点,且OA垂直于OB求证:直线L过定点,并求出该点的坐标
动圆P过定点F(1,0)且与直线x=-1相切,圆心P的轨迹为曲线C,过点F作曲线C两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N 求证:直线MN必过定点
已知动圆过定点F(0,2),且与定直线L:y=-2相切.求动圆圆心的轨迹C的方程.若AB是轨迹C的动弦,且AB