物理和化学论文怎么写(可以给范文)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 10:38:08
物理和化学论文怎么写(可以给范文)
xZr"vy~ W0ZBAWf0CC="aplzU5z/1G7cgBfu^۬?+ج_م}oUw| zmxn49Y@qdA xC'z) #RGW5ZK )Qy9\:Hӛ-UDM&jԏ qpwMOB(_3S뽄n2eciD @=P\P^|`9̷C-3. $#b"c,mF Ƥ,coĶOrėTωpo ]Cabo !WKbqAg^^,̈́&+t:3;n9x~"c/ s7+e}R7:7~U1Z.ݵ"5tI}EWe'G4Q-[tHK]f,G1 #‡#_`, %qm#>Ji:| - Df FYoWs%̀G yT¢kg'`0S* "2¿}zԣB.h)0gdN!z\)ftGLjd8۪lf:MQL%I( ] .5%4l4(i(䦦]fFuk:bxij.z(rWȪ6X9K˽$ vWBen<%k5ݜ!L((--:I^6m[*iԄN~` Ϥ\;uIe $v}.Xou^u,g}O~0XPZ)VB]5D YWE"|!Q8cH>q Y -I4A/.äو3E׉Z"( =|}[HOȹ!l}.Ib e WEӹ|6s$"E;,&L#sBho^yvq6Ы mB V?IA "&lm::Jb[r!-v4cw9/yLd:QUO鰦ϑE Rf܌?aƯjɋbp~6砟V) 8 0Vύ`o! |u9㼨_jC,Ǝ#WYLd!׏ayLDžU6djZqT 1¶nX[2N H.m9zkjV[?} nf;Yۊ_NOTްXzxc(Dz,Id>"+ O;Di0΄I*;Y>`C35F5\ɉ+ɥ8OӖ5*\l:NLu/v7mR'i092j]vvT ɖx4 K%.Kn13:iO:IΒD  ԰pHK8OԹJ`כLAMn~ԡUf2ff7ddH Tkg#zmV\RcrYJ5QIqvT-woNI7`Ck]Tf9"5`V!v1Uay'" 5Q=v=#2+ʪz &lX տo/>1

物理和化学论文怎么写(可以给范文)
物理和化学论文怎么写(可以给范文)

物理和化学论文怎么写(可以给范文)
一.
数学小论文一
关于“0”
0,可以说是人类最早接触的数了.我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量.”这样说显然是不正确的.我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点.而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的.2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等.”
“任何数除以0即为没有意义.”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少.一个整体无法分成0份,即“没有意义”.后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数).从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”.
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同.105、2003年中的0指数的空位,不可删去.203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去.0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的.”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人.作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”.
数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”
这样的说法可不对.因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象.
历史上,关于什么是数学的说法更是五花八门.有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代.”
那么,究竟什么是数学呢?
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断.恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”.根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学.
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学.
纯粹数学也叫基础数学,专门研究数学本身的内部规律.中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学.纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式.例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系.
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分.应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁.大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征.
高度的抽象性是数学的显著特征之一.数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的.例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可.现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展.根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学.
体系的严谨性是数学的另一个显著特征.数学思维的正确性表现在逻辑的严谨性上.早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣.所以,数学一直被誉为是“精确科学的典范”.
广泛的应用性也是数学的一个显著特征.宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学.20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门.不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科.
各门科学的“数学化”,是现代科学发展的一大趋势.
二.
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情.比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样.王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对.这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果.”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲.其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点.如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米).所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米).两个答案,也就是说王星的答案加上小英的答案才是全面的.
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意.否则就容易忽略了另外的答案,犯以偏概全的错误.
希望可以帮到你o(∩_∩)o