f(x)在(0,无穷)内可导,且f'(x)>0,f(0)=0,则在区间(0,无穷)内f(x)的符号为什么未定?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 08:28:50
f(x)在(0,无穷)内可导,且f'(x)>0,f(0)=0,则在区间(0,无穷)内f(x)的符号为什么未定?
xOKN@>L`,gEэFV FhB3bY2W-=7ߓC3lJ3 qp*4]p"q#G甀|wںJ͹XXߖoŕv<Bo8-e{>Yj - \LI?`U^b S*QZzt]d]K=ȒǾn*}<8 |?lW#FuJܻo_[

f(x)在(0,无穷)内可导,且f'(x)>0,f(0)=0,则在区间(0,无穷)内f(x)的符号为什么未定?
f(x)在(0,无穷)内可导,且f'(x)>0,f(0)=0,则在区间(0,无穷)内f(x)的符号为什么未定?

f(x)在(0,无穷)内可导,且f'(x)>0,f(0)=0,则在区间(0,无穷)内f(x)的符号为什么未定?
因为函数在0到无穷上不一定连续,在0处可能间断,函数在趋近于零时符号不定.

符号为正号。因为该函数可导且导函数大于0,故递增。在0到无穷函数为正号

f(x)在(0,无穷)内可导,且f'(x)>0,f(0)=0,则在区间(0,无穷)内f(x)的符号为什么未定? f(x)在【0,+无穷)上连续,在(0,+无穷)上可微,且f(x)的导数单调递增,f(0)=0,证明:g(x)=f(x)/x在f(x)在【0,+无穷)上连续,在(0,+无穷)上可微,且f(x)的导数单调递增,f(0)=0,证明:g(x)=f(x f(x)在(0,+无穷)上递减,且f(2a^2+a+1) f(x)在(0,+无穷)上递减,且f(2a^2+a+1) f(x)-xf(-x)=1/x,就f(x)的解析式已知f(x)为偶函数,且在f(x)(0,+无穷)上是减函数,证明:f(x)在(-无穷,0)上是增函数 已知f(x)是偶函数,且f(x)在[0,正无穷)上是增函数,如果f(ax+1) 设奇函数f(x)是在(0,正无穷)上为增函数且f(x)=0,则不等式f(x)-f(x)/x 关于“证明函数恒等式”先举个具体例题:设f(x)在[0,正无穷)上连续,在(0,正无穷)内可导且满足f(0)=0,f(x)>=0,f(x)>=f'(x)(x>0),求证:f(x)恒等于0这道题书上给的分析是因f(x)>=0,若能证f(x)我输错 已知f(x)是定义在(0,正无穷)上的增函数且f(x/y)=f(x)-f(y).求f(1)的值. 设函数在f(x)在(0,正无穷)内可导,且f(e ^x)=x+e^x,则f'(1)=设函数在f(x)在(0,正无穷)内可导,且f(e ^x)=x+e^x,则f'(1)= f(x)在无穷区间(x0,+∞)内可导,且lim(x→+∞)f'(x)=0,证明:lim(x→+∞)(f(x)/x)=0 已知函数f(x)定义域(-无穷,0)U(0,+无穷)奇函数区间(0,正无穷)单调递增且f(2)=0若f已知函数f(x)是定义域为(-无穷,0)U(0,+无穷)的奇函数,在区间(0,正无穷)上单调递增,且f(2)=0若f(x)/(x-1)<0则x的取 偶函数f(x)在(0,正无穷)上为减函数,且f(2)=0,则不等式[f(x)+f(-x) ] /x>0解集为 设f(x)在(0,正无穷)上是增函数,且f(1)=0.,则不等式x分之f(x)-f(-x) 设奇函数f(x)在(0,+无穷)上为增函数,且f(1)=0,则不等式f(x)-f(-x)/x 设奇函数f(x)在(0,正无穷)上为增函数,且f(1)等于零,则不等式f(x)-f(-x)/x 已知y=f(x)满足f(-x)=-f(x),它在(0,+无穷)上是增函数,且f(x) f(x)是定义在(0,正无穷)上的非负可导函数且满足xf'(x)+f(x)