设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,试证明(a,b)内至少存在一点c,使得f'(c)-f(c)=0.详细一点点哈
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 17:46:12
x){nϦnHӨ|:gEtNR]/{{PӶ֧럮ߣdǔ4DM4$M[맾XlFBO7L|vP
ϛv&<ٻiɚi@@ewA 6IETpjKfV:1 kUh<혙gضO7Lyn m.|{^M i.ȘX}1`ßu6<ٽ
Sigs:Qn_\g
D >BR
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,试证明(a,b)内至少存在一点c,使得f'(c)-f(c)=0.详细一点点哈
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,
试证明(a,b)内至少存在一点c,使得f'(c)-f(c)=0.详细一点点哈
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,试证明(a,b)内至少存在一点c,使得f'(c)-f(c)=0.详细一点点哈
设g(x)=f(x)/(e^x),则g(x)在[a,b]上满足罗尔定理条件.g′(x)=[f′(x)-f(x)]/e^x
所以(a,b)内至少存在一点c,使得g′(c)=0,即有f'(c)-f(c)=0.
设函数f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设函数f(x)在[a,b]上连续,在(a,b)上可导且f'(x)
设函数f(x),g(x)在区间[a,b]上连续,且f(a)
设函数f(x)在[a,b]上连续,在(a,b)内可导(0
设函数f 在[a,b]上连续,M=max|f(x)|(a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,a
设函数f(x)在闭区间[a,b]上连续,a
设函数f(x)在闭区间[a,b]上连续,a
设函数f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b)
若函数f(x)在[a,b]上连续,a