因式分解练习题及答案进行两次或两次以上因式分解60道,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 17:32:26
因式分解练习题及答案进行两次或两次以上因式分解60道,
xYnH~VZu]&. w#{檓@$d ЄBwiyY}+wlǝtr]uSuNQn%ٜzDu4Ϛ[gv+~,n>҃eԞ/nׂ] =rk1m˟o8LX%7 R@),0 '}/u>!XźO^ R &$`U~OK>Li[6pni1@ rcH㐡F\ &Wr2iXΡdXcE`L/c ~F-hs -?IժJe)XpJ1M}V!Ehю!#P!BvAC7ZUWj YxT!WCc]MI`2Ƶi[C ªd؉u_>o~>n98V?!Bnxˡ1[KQg=>\m$w+ә5x.fԝ3f+>ob%9ڈDGe{ )[`~4U/0AxiYBN0[QmiL&b%aw\}uuãx)av 0nK.59I@9Zw?lؘtEԱ) X+h%- e'~c[vws̉lm@ޙJ2(%k{KQ{Q^ʆ*Ípo|$1̷E/LK7*+n =Ԛ9;!.KؚGBԞa|@QYCZ<s/"h)Bf.J ;hIq5n;׿ص b0L?~=Q{/ZB]:rӚ-L.>UM|Zi1y6lyPs 7\nj A f*4 'B*>aXE>0 =5%RJ' 8w s 4h0=5TT5RE`+NSl>z#-֒ { tGn >MܰSpkD-}TfZڹ.Ori %E0纰j&1T\h% J]TZT"Tn@* KUT4fUʫZ[ЛAq չ{-:_8y"8.,aW2STkx٣u=$/ߠ/ٯѮ]!3Lv<[[1uNݪ}X>Iwz<̀F 6pΝ3۝ RՍW%73'ω*~M aPԠ"djcנ*u:a6zvȀ μ122C!3=N42K'!@{*r3w.^pΔn<>A ޤ;oALz{<h L(u˘.gg 6͑7I;0*>_e|)C#ⷪ_EǻࢣR^pd0k&|=GA. F̫Jb̾ 8RT} 6mRl m|gcB  5˼>(3=>t'{|Q#CKT> T5"BD(Eh< _Zְm^/UU 0WCثp m QL;mYi}kib?D~U3J<a=3ʹT!m/I&ٓ{5⽖7owpNӐDWN,oFfDF=q$A=zo u C՟prl3Mh ?rpy~axrU 4Z_bLZ*-ܕˡqg]IٹۣdLw`M8rq Ĕ^aֹ pr|UV>9Ymoi鵳.~.4T/\ Ao2mg?и% O_'ϟ4ozu3j`_7Ỉzu ʥи|(NVjF,`$N8J,X5e 61zܾj'F򪇇?/L[^`}$ߜjjfv~VzƤ~#~7,@}ݨ|w0k1jo]ʭ-#zEm@5^:95X 4O&YbS npޔ~F>R&q2~]n 07lY;wQ.*[/f\`ANmZJB>{;.6:)EM89!h( ,/_HGzMSE_0IԞ?yL4)A^}<ȃHTQCm;9{^bbCJ X6 K 5Ȧ&LR`&:=PɝrgRŹ􏁺)0e .B.

因式分解练习题及答案进行两次或两次以上因式分解60道,
因式分解练习题及答案
进行两次或两次以上因式分解60道,

因式分解练习题及答案进行两次或两次以上因式分解60道,
1.a^4-4a+3 2.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n 3.x^2+(a+1/a)xy+y^2 4.9a^2-4b^2+4bc-c^2 5.(c-a)^2-4(b-c)(a-b) 答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3) 2.[1-(a+x)^m][(b+x)^n-1] 3.(ax+y)(1/ax+y) 4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c) 5.(c-a)^2-4(b-c)(a-b) = (c-a)(c-a)-4(ab-b^2-ac+bc) =c^2-2ac+a^2-4ab+4b^2+4ac-4bc =c^2+a^2+4b^2-4ab+2ac-4bc =(a-2b)^2+c^2-(2c)(a-2b) =(a-2b-c)^2 1.x^2+2x-8 2.x^2+3x-10 3.x^2-x-20 4.x^2+x-6 5.2x^2+5x-3 6.6x^2+4x-2 7.x^2-2x-3 8.x^2+6x+8 9.x^2-x-12 10.x^2-7x+10 11.6x^2+x+2 12.4x^2+4x-3 解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一 十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解. 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数. 2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程. 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错. 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单.2、十字相乘法只适用于二次三项式类型的题目.3、十字相乘法比较难学. 5、十字相乘法解题实例: 1)、 用十字相乘法解一些简单常见的题目 例1把m²+4m-12分解因式 分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题 因为 1 -2 1 ╳ 6 所以m²+4m-12=(m-2)(m+6) 例2把5x²+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题 因为 1 2 5 ╳ -4 所以5x²+6x-8=(x+2)(5x-4) 例3解方程x²-8x+15=0 分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5. 因为 1 -3 1 ╳ -5 所以原方程可变形(x-3)(x-5)=0 所以x1=3 x2=5 例4、解方程 6x²-5x-25=0 分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1. 因为 2 -5 3 ╳ 5 所以 原方程可变形成(2x-5)(3x+5)=0 所以 x1=5/2 x2=-5/3 2)、用十字相乘法解一些比较难的题目 例5把14x²-67xy+18y²分解因式 分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y 解: 因为 2 -9y 7 ╳ -2y 所以 14x²-67xy+18y²= (2x-9y)(7x-2y) 例6 把10x²-27xy-28y²-x+25y-3分解因式 分析:在本题中,要把这个多项式整理成二次三项式的形式 解法一、10x²-27xy-28y²-x+25y-3 =10x²-(27y+1)x -(28y²-25y+3) 4y -3 7y ╳ -1 =10x²-(27y+1)x -(4y-3)(7y -1) =[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1) 5 ╳ 4y - 3 =(2x -7y +1)(5x +4y -3) 说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)] 解法二、10x²-27xy-28y²-x+25y-3 =(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y =[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y =(2x -7y+1)(5x -4y -3) 2 x -7y 1 5 x - 4y ╳ -3 说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3]. 例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0 分析:2a²–ab-b²可以用十字相乘法进行因式分解 x²- 3ax + 2a²–ab -b²=0 x²- 3ax +(2a²–ab - b²)=0 x²- 3ax +(2a+b)(a-b)=0 1 -b 2 ╳ +b [x-(2a+b)][ x-(a-b)]=0 1 -(2a+b) 1 ╳ -(a-b) 所以 x1=2a+b x2=a-b 5-7(a+1)-6(a+1)^2 =-[6(a+1)^2+7(a+1)-5] =-[2(a+1)-1][3(a+1)+5] =-(2a+1)(3a+8); -4x^3 +6x^2 -2x =-2x(2x^2-3x+1) =-2x(x-1)(2x-1); 6(y-z)^2 +13(z-y)+6 =6(z-y)^2+13(z-y)+6 =[2(z-y)+3][3(z-y)+2] =(2z-2y+3)(3z-3y+2). 比如...x^2+6x-7这个式子 由于一次幂x前系数为6 所以,我们可以想到,7-1=6 那正好这个式子的常数项为-7 因此我们想到将-7看成7*(-1) 于是我们作十字相成 x +7 x -1 的到(x+7)·(x-1) 成功分解了因式 3ab^2-9a^2b^2+6a^3b^2 =3ab^2(1-3a+2a^2) =3ab^2(2a^2-3a+1) =3ab^2(2a-1)(a-1) 5-7(a+1)-6(a+1)^2 =-[6(a+1)^2+7(a+1)-5] =-[2(a+1)-1][3(a+1)+5] =-(2a+1)(3a+8); -4x^3 +6x^2 -2x =-2x(2x^2-3x+1) =-2x(x-1)(2x-1); 6(y-z)^2 +13(z-y)+6 =6(z-y)^2+13(z-y)+6 =[2(z-y)+3][3(z-y)+2] =(2z-2y+3)(3z-3y+2). 比如...x^2+6x-7这个式子 由于一次幂x前系数为6 所以,我们可以想到,7-1=6 那正好这个式子的常数项为-7 因此我们想到将-7看成7*(-1) 于是我们作十字相成 x +7 x -1 的到(x+7)·(x-1) 成功分解了因式 3ab^2-9a^2b^2+6a^3b^2 =3ab^2(1-3a+2a^2) =3ab^2(2a^2-3a+1) =3ab^2(2a-1)(a-1) x^2+3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5). ⑹十字相乘法 这种方法有两种情况. ①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q) . ②kx^2+mx+n型的式子的因式分解 如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d). 图示如下: a b × c d 例如:因为 1 -3 × 7 2 -3×7=-21,1×2=2,且2-21=-19, 所以7x^2-19x-6=(7x+2)(x-3). 十字相乘法口诀:首尾分解,交叉相乘,求和凑中 ⑶分组分解法 分组分解是解方程的一种简洁的方法,我们来学习这个知识. 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法. 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难. 同样,这道题也可以这样做. ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出. 2. x3-x2+x-1 解法:=(x3-x2)+(x-1) =x2(x-1)+(x-1) =(x-1)(x2+1) 利用二二分法,提公因式法提出x2,然后相合轻松解决. 3. x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y+1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决. 758²—258² =(758+258)(758-258)=1016*500=508000