如图第11题和12题,分别考察的是什么?思路是什么?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 10:53:22
如图第11题和12题,分别考察的是什么?思路是什么?
如图第11题和12题,分别考察的是什么?思路是什么?
如图第11题和12题,分别考察的是什么?思路是什么?
第11题:考察全微分的定义及函数积分
函数z=f(x,y),则z的全微分为
dz=əz/əx*dx+əz/əy*dy
对照题目,则有
əz/əx=(4x+ay)/(2x+y)² (1)
əz/əy=y/(2x+y)² (2)
对第(2)式对y积分,可得
z(x,y)=∫y/(2x+y)²*dy=∫yd[-1/(2x+y)]
=-y/(2x+y)+∫dy/(2x+y)
=-y/(2x+y)+∫1/(2x+y)*d(2x+y)
=-y/(2x+y)+ln|2x+y|+C
再由z(x,y)对x求偏导,可得
əz/əx=2y/(2x+y)²+2/(2x+y)
=(2y+4x+2y)/(2x+y)²
=(4x+4y)/(2x+y)²
=(4x+ay)/(2x+y)²
∴a=4,选B
第12题:考察积分变量的相互转化及对变量区域的理解
如图,函数的积分区域为阴影区域(两部分)
当先积y,后积x时,要将y表示为包含x的函数
此题此时,y的积分上下限均为单一函数,可用一个积分式表示
当先积x,后积y时,要将x表示为包含y的函数
此题此时,x的左右限不能用单一函数表示,要分段积分
第一段为y从0到1,x从-1到y-1,积分为s1=∫<0,1>dy∫<-1,y-1>f(x,y)dx
第二段为y从1到√2,x从-1到-√(y²-1),积分为s2=∫<1,√2>dy∫<-1,-√(y²-1)>f(x,y)dx
整个积分为两段积分之和,即
s=s1+s2=∫<0,1>dy∫<-1,y-1>f(x,y)dx+∫<1,√2>dy∫<-1,-√(y²-1)>f(x,y)dx
可知,选A