已知6(sina)^2+sinacosa-2(cosa)^2=0,a∈[∏/2,∏],求sin(2a+∏/3)的值求函数f(x)=[(sina)^4+(cos)^4+(sinx)^2(cosx)^2]/[2-sin2x]的最小正周期\最大值\最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 15:16:14
已知6(sina)^2+sinacosa-2(cosa)^2=0,a∈[∏/2,∏],求sin(2a+∏/3)的值求函数f(x)=[(sina)^4+(cos)^4+(sinx)^2(cosx)^2]/[2-sin2x]的最小正周期\最大值\最小值
xQN0FI|E4H D͒BRHd{(fKQFȘ J%pL]| :"2ngzT_)LZA#(k)OL)D*Wf6b}a@ol~j\^WZo;9KkpD$<0l%mo݋CJ|?i@൚ݦo@A$3K ز$ XHEȳQS

已知6(sina)^2+sinacosa-2(cosa)^2=0,a∈[∏/2,∏],求sin(2a+∏/3)的值求函数f(x)=[(sina)^4+(cos)^4+(sinx)^2(cosx)^2]/[2-sin2x]的最小正周期\最大值\最小值
已知6(sina)^2+sinacosa-2(cosa)^2=0,a∈[∏/2,∏],求sin(2a+∏/3)的值
求函数f(x)=[(sina)^4+(cos)^4+(sinx)^2(cosx)^2]/[2-sin2x]的最小正周期\最大值\最小值

已知6(sina)^2+sinacosa-2(cosa)^2=0,a∈[∏/2,∏],求sin(2a+∏/3)的值求函数f(x)=[(sina)^4+(cos)^4+(sinx)^2(cosx)^2]/[2-sin2x]的最小正周期\最大值\最小值
因式分解
(3sina+2cosa)(2sina-cosa)=0
sina/cosa=-2/3或1/2(舍)
(sina)^2/(cosa)^2=4/9
(sina)^2/[1-(sina)^2]=4/9
(sina)^2=4/5
sina=2/√5,cosa=-1/√5
sin2a=2*2/√5*(-1/√5)=-4/5
cos2a=1/5
sin(2a+TT/3)=(√3-4)/10