已知等差数列{an}的公差d≠0,an≠0,设方程arx^2 +2ar+1 +ar+2=0(r∈N+)是关于x的一元二次方程.(1)证明这些方程必有公共根.(2)对于不同的r,设这些方程的另一个根为mr,证明数列{1/(mr+1)}也是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 06:55:48
xRJ@
cLgI?
n[JDhl/.Lc3/xg
ną 9s,fCt҈|;mVٛnʽ]AvUq"XaT*hyż
]Ay4S>\Ak}{=w F5YEGTLn\
n a8R}6@*<@cM3ٿ6dʍwZtؤc[;..
Vy<Bi3濿-V
!eW25{Z s?Db:"ѧs5P|quQg%1"Mb授(1hpZUK@ǯ]8< MUo~>5>T2F4lT`a '0.!o|KDM_-Eތ89؞NWiEW v
已知等差数列{an}的公差d≠0,an≠0,设方程arx^2 +2ar+1 +ar+2=0(r∈N+)是关于x的一元二次方程.(1)证明这些方程必有公共根.(2)对于不同的r,设这些方程的另一个根为mr,证明数列{1/(mr+1)}也是
已知等差数列{an}的公差d≠0,an≠0,设方程arx^2 +2ar+1 +ar+2=0(r∈N+)是关于x的一元二次方程.
(1)证明这些方程必有公共根.
(2)对于不同的r,设这些方程的另一个根为mr,证明数列{1/(mr+1)}也是等差数列.
注:上述题目中的r和n均为下标,r+1和r+2均为下标.
已知等差数列{an}的公差d≠0,an≠0,设方程arx^2 +2ar+1 +ar+2=0(r∈N+)是关于x的一元二次方程.(1)证明这些方程必有公共根.(2)对于不同的r,设这些方程的另一个根为mr,证明数列{1/(mr+1)}也是
方程里漏了个x吧
1)a[r]=a[r+1]-d
a[r+2]=a[r-1]+d
代入方程
(a[r+1]-d)x^2+a[r+1]x+a[r-1]+d=0
(x+1)[(a[r+1]-d)x+a[r+1]+d]=0
两个根:
-1、-(a〔r+1]+d)/(a〔r+1]-d)
所以必有公共根-1
2)1/(m[r]+1)=1/2-a[r+1]/2d
1/(m[r+1]+1)=1/2-a[r+2]/2d
1/(m[r+1]+1)=1/(m[r]+1)=-(a[r+2]-a[r+1])/2d
=-1/2
所以数列{1/(mr+1)}是公差为-1/2的等差数列
已知等差数列{An}的公差d
已知等差数列{an}的公差d
已知等差数列{an}的公差d
已知等差数列an的公差d不等于0
等差数列{an}的公差d
等差数列{an}的公差d
等差数列an的公差d
等差数列{an}的公差d
2. 已知等差数列{an},公差d≠0,a1,a5,a17成等比数列,则 /=
已知等差数列an中,公差d
已知等差数列{an}的公差d≠0,且a1,a3,a9是某等比数列的前三项,求等比数列公比
已知数列an是等差数列,公差d≠0,切a1,a3,a4成等比数列,(1)求a5的值
已知等差数列{an}的公差d≠0,若a5 a9 a15成等比数列,那么公比为
已知等差数列{an}的公差d≠0,若a5,a9,a15成等比数列,那么公比为
等差数列{an}的公差d≠0,比较a4a9与a6a7的大小
等差数列{an}的公差d≠0,试比较a4a9与a6a7的大小.
已知在等差数列{An}中,公差d≠0,且a1,a5,a17成等比数列,a3=8,求{An}的通项公式已知在等差数列{An}中,公差d≠0,且a1,a5,a17成等比数列,a3=8,求{An}的通项公式An及前n项和Sn。
若等差数列an的公差d