求两个三角形相似的条件!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:41:10
求两个三角形相似的条件!
xV[N@JHQEH%vj7م&%y7@" c^b k?!?Qmj605T 4~c> b3rΩĕ@LWמZX+hqV5Tes'4 С

求两个三角形相似的条件!
求两个三角形相似的条件!

求两个三角形相似的条件!
相似三角形的判定方法
根据相似图形的特征来判断.(对应边成比例,对应边的夹角相等)
方法一
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (这是相似三角形判定的引理,是以下判定方法证明的基础.这个引理的证明方法需要平行线分线段成比例的证明)
方法二
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;(AA)
方法三
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(SAS)
方法四
如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(SSS)
方法五
对应角相等,对应边成比例的两个三角形叫做相似三角形(用定义证明)
供参考

相似三角形的判定定理:
(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似).
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三...

全部展开

相似三角形的判定定理:
(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似).
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)
直角三角形相似的判定定理:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似.
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
相似三角形的性质定理:
(1)相似三角形的对应角相等.
(2)相似三角形的对应边成比例.
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.
(4)相似三角形的周长比等于相似比.
(5)相似三角形的面积比等于相似比的平方.
相似三角形的传递性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

收起