圆锥曲线 已知中心在原点O的椭圆x^2/a^2+y^2/b^2=1(a>b>0),其短轴长为2√2 ,一焦点F(c,0)(c>0),且2a^2=3c^2,过点A(3,0)的直线与椭圆相交于P、Q两点 (I)若向量OP*OQ=0 ,求直线PQ的方程;(II)设

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 14:53:07
圆锥曲线 已知中心在原点O的椭圆x^2/a^2+y^2/b^2=1(a>b>0),其短轴长为2√2 ,一焦点F(c,0)(c>0),且2a^2=3c^2,过点A(3,0)的直线与椭圆相交于P、Q两点 (I)若向量OP*OQ=0 ,求直线PQ的方程;(II)设
xT[OP*KLLKO ;KxY{6.HboPa 2$n,Ci=+oϙ[hL֝69S=s[̭թybw^{v7z{F.%#峘Bγቊ^tk'5[#EwBEE*Rf:z x efVM:8!# j/oLkc 1Zu=^_J8{ oċX'5NbًCN a6ݏ_N眷eet&vV^+;tG{mYk(~y9Fyފ"msIx4m^q s$&!Gh"797 yCDXAf]^C9) 3RBlmJȁ:t с&*2Te# /誤#]3aDP  _?rl+Qz,>"V|)0aõ0RLȓd(Td!uBf 6T%͐ hy\dpm>@:;;Kj;MjRy1{__9S

圆锥曲线 已知中心在原点O的椭圆x^2/a^2+y^2/b^2=1(a>b>0),其短轴长为2√2 ,一焦点F(c,0)(c>0),且2a^2=3c^2,过点A(3,0)的直线与椭圆相交于P、Q两点 (I)若向量OP*OQ=0 ,求直线PQ的方程;(II)设
圆锥曲线
已知中心在原点O的椭圆x^2/a^2+y^2/b^2=1(a>b>0),其短轴长为2√2 ,一焦点F(c,0)(c>0),且2a^2=3c^2,过点A(3,0)的直线与椭圆相交于P、Q两点
(I)若向量OP*OQ=0 ,求直线PQ的方程;
(II)设向量AP=λAP(λ>1) ,点M为P关于x轴的对称点,证明:向量FM=-λFQ
打错了(II)设向量AP=λAQ(λ>1) 点M为P关于x轴的对称点,证明:向量FM=-λFQ

圆锥曲线 已知中心在原点O的椭圆x^2/a^2+y^2/b^2=1(a>b>0),其短轴长为2√2 ,一焦点F(c,0)(c>0),且2a^2=3c^2,过点A(3,0)的直线与椭圆相交于P、Q两点 (I)若向量OP*OQ=0 ,求直线PQ的方程;(II)设
(I)短轴长为2√2即b=√2
所以a²-c²=b²=2…………①
而2a²=3c²………………②
由①②得a=√6,c=2
设直线PQ方程为y=k(x-3)代入椭圆方程x²/6+y²/2=1得
(3k²+1)x²-18k²x+27k²-6=0
设P(x1,y1),Q(x2,y2)
则x1+x2=18k²/(3k²+1),x1x2=(27k²-6)/(3k²+1),y1y2=k²(x1-3)(x2-3)=k²x1x2-3k²(x1+x2)+9k²
因为向量OP*OQ=0
所以x1x2+y1y2=0
x1x2+y1y2=(k²+1)x1x2-3k²(x1+x2)+9k²=[(k²+1)(27k²-6)]/(3k²+1)-(54k²*k²)/(3k²+1)+9k²=0
得k²=1/5,即k=±√5/5
所以直线PQ的方程为y=±√5/5(x-3)
(II)向量AP=λAP(λ>1)这个条件不成立

解析几何圆锥曲线已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=(根10)/2,求椭圆方程. 高中圆锥曲线应用题 已知椭圆的中心在原点O已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为√10,过焦点F作直线l,交椭圆于A,B两点①求这个椭圆的标准方程②若椭圆上有一 圆锥曲线,解析几何已知椭圆的中心为坐标原点O,焦点在x轴上,椭圆短半轴长为1,动点M(2.t)(t>0)在直线x=(axa)/c(a为长半轴,c为短半轴)上,(1)求椭圆的标准方程(2)求以OM为直径且被直线3x-4y-5=0截得的 高中圆锥曲线应用题 已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为√10已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为√10,过焦点F作直线l,交椭圆于A,B 一道关于圆锥曲线的高中数学题已知椭圆中心为坐标原点O,交点在X轴上,斜率为1且过椭圆右焦点F的直线L交椭圆于A,B两点,向量OA+向量OB与向量n=(1,3)垂直1.求椭圆的离心率e2.设M为椭圆上任意 已知中心在坐标原点O,焦点在x轴上,长轴长是短轴长的2倍的椭圆经过点M=(2.1)求椭圆方程 高中圆锥曲线应用题已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为√10,过焦点F作直线l,交椭圆于A,B两点①求这个椭圆的标准方程②若椭圆上有一点C,使四边形AOBC恰好为平 圆锥曲线方程已知椭圆的中心在原点,准线为x=正负4倍根号2,若直线X-根号2y=0与椭圆的交点在x轴上的射影恰为椭圆的焦点,求椭圆的方程 高二圆锥曲线关于椭圆的问题设椭圆的中心是坐标原点,长轴在X轴上,离心率为根号3/2,已知点P(0,3/2)到这个椭圆上的点的最远距离是根号7,求这个椭圆的方程,并求椭圆上到点P的距离等于7的点 关于椭圆,圆锥曲线的已知椭圆x^2/a^2+y^2/b^2=1(a>b>0).已知椭圆的离心率为√6/4,A为椭圆的左顶点,O是坐标原点.若点Q在椭圆上且满足IAQI=(AOI,求直线OQ的斜率的值. 已知椭圆的中心在原点O,焦点F在x轴上,一个顶点A(0,-1),原点到直线AF的距离为√2 /2,求椭圆方程 已知椭圆C的对称中心为原点O,焦点在X轴上,离心率1/2为,且点(1.3/2)在该椭圆上.求过椭圆左焦点F的直线L 已知椭圆的中心在原点O 焦点在坐标轴上 直线y=x+1与该椭圆相交与P和Q且OP⊥OQ 绝对值PQ=2分之根号10 求椭圆的方程 已知椭圆的中心在原点O 焦点在坐标轴上 直线y=x+1与该椭圆相交与P和Q且OP⊥OQ 绝对值PQ=2分之根号10 求椭圆的方程 圆锥曲线 已知中心在原点O的椭圆x^2/a^2+y^2/b^2=1(a>b>0),其短轴长为2√2 ,一焦点F(c,0)(c>0),且2a^2=3c^2,过点A(3,0)的直线与椭圆相交于P、Q两点 (I)若向量OP*OQ=0 ,求直线PQ的方程;(II)设 已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆交于P,Q两点,且OP⊥OQ,/PQ/=根号10/2,求这个椭圆方程. 已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆相交于点P和Q,且OP⊥OQ,|PQ|=√10/2,求椭圆方程 已知椭圆中心在原点,焦点在X轴上,离心率为 根号2/2,过椭圆的右焦点且垂直于长轴的弦长为 根号2①求椭圆的标准方程;②已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ.试探究点O到直线L