如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5OC=6根号2 则另一直角边BC的长为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 11:20:54
如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5OC=6根号2   则另一直角边BC的长为
xWNG~+Rzgϻ-t̪=7 Q^QP04%$#$ !)$1$Qwmx ATU;ogb_O~_8\̨Z<,> m,,3j\Buo9X,l{2o<]7/*JRljhIߵǫ--ZZ lD"/DC%U-;=֭3,Հ&A~ 'wj¾n k7>߲ S`2sn{Fc~]j2B|@Z@g;0H8u-tml㑥3Y4d|X|/-a0$x[팡Z]C5t@2[ĦAZY{KNZcdžw0m>Xk:el"_vih7~ 6&^LCU]*8w1ix{ciBp=2\ ?".\sf_n>Dq}pzRExh@Vv;i|ӵw<ܿ߆C_d!ǃeR-T3ܭ=$5!y^֠ Dh~%]Um~͟w(,_0/1ѥSdԢƦHbM@W",HU; @ _a `.`z8ot򆴨JO|jboH8\s}hb1Sw9

如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5OC=6根号2 则另一直角边BC的长为
如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5
OC=6根号2   则另一直角边BC的长为

如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5OC=6根号2 则另一直角边BC的长为
解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∠AMO=90°,∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△BOF中,
∠AMO=∠OFB=90°∠OAM=∠BOFOA=OB,
∴△AOM≌△BOF(AAS),
∴AM=OF,OM=FB,
又∠ACB=∠AMF=∠CFM=90°,
∴四边形ACFM为矩形,
∴AM=CF,AC=MF=5,
∴OF=CF,
∴△OCF为等腰直角三角形,
∵OC=6根号2,
∴根据勾股定理得:CF2+OF2=OC2,
解得:CF=OF=6,
∴FB=OM=OF-FM=6-5=1,
则BC=CF+BF=6+1=7.
故答案为:7.

http://sxtk.chinaedu.com/q_tQuestion_5_0202_0_0_0_0_0_3_0.html

7

分析:过O作OF垂直于BC,再过A作AM垂直于OF,由四边形ABDE为正方形,得到OA=OB,∠AOB为直角,可得出两个角互余,再由AM垂直于MO,得到△AOM为直角三角形,其两个锐角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,OA=OB,利用AAS可得出△AOM与△BOF全等,由全等三角形的对应边相等可得出AM=OF,OM=FB,由三个角为直角的四边形为矩形得到ACFM为矩形,根据矩形的对边相等可得出AC=MF,AM=CF,等量代换可得出CF=OF,即△COF为等腰直角三角形,由斜边OC的长,利用勾股定理求出OF与CF的长,根据OF-MF求出OM的长,即为FB的长,由CF+FB即可求出BC的长. 

解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,
∵四边形ABDE为正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∠AMO=90°,∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△BOF中,
∠AMO=∠OFB=90°∠OAM=∠BOFOA=OB,
∴△AOM≌△BOF(AAS),
∴AM=OF,OM=FB,
又∠ACB=∠AMF=∠CFM=90°,
∴四边形ACFM为矩形,
∴AM=CF,AC=MF=5,
∴OF=CF,
∴△OCF为等腰直角三角形,
∵OC=62,
∴根据勾股定理得:CF2+OF2=OC2,
解得:CF=OF=6,
∴FB=OM=OF-FM=6-5=1,
则BC=CF+BF=6+1=7.
故答案为:7.


解法二:如图2所示,
过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.
易证△OMA≌△ONB,∴OM=ON,MA=NB.
∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.
∵OC=62,∴CM=6.
∴MA=CM-AC=6-5=1,
∴BC=CN+NB=6+1=7.
故答案为:7.点评:此题考查了正方形的性质,全等三角形的判定与性质,勾股定理,以及等腰直角三角形的判定与性质,利用了转化及等量代换的思想,根据题意作出相应的辅助线是解本题的关键.

如图,在Rt△ABC中,AB=6,CB=8,∠C=90°,以Rt△ABC的三边为直径向同一侧作三个半圆,求形成的阴影的面积 如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,求图中阴影部分如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,求图中阴影部分 如图,Rt△ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为 .如图,Rt△ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为 . 如图在Rt△ABC中,∠C=90°,AC=12,BC=15.求以AB为 直径的半圆的面积如图在Rt△ABC中,∠C=90°,AC=12,BC=15.求以AB为 直径的半圆的面积 如图,在Rt△ABC中,∠C等于90°,图中有三个正方形,证明a=b+c? 如图,在Rt△ABC中,角C=90° 如图,在Rt△ABC中,∠C=90°,CA=CB=2,分别以A,B,C为圆心,以1为半径画弧,与AB所围成的阴影部分的周长是____如图,在Rt△ABC中,∠C=90°,CA=CB=2,分别以A,B,C为圆心,以1为半径画弧,三条弧与AB所围成的阴影部 如图,在RT△ABC中,∠C=90°,BC=a,AC=b(a>b).如果以AB边做正方形ABDE,那么△ABC的如图,在RT△ABC中,∠C=90°,BC=a,AC=b(a>b).(1)如果以AB边做正方形ABDE,那么△ABC的顶点C与正方形ABDE的顶点D之间的距离为—— 如图,在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,以BC边所在的直线为轴,将△ABC旋转一周得到的圆锥侧面积是▁ 如图,在Rt△ABC中,∠C=90°,AB=5,S△ABC=6,求△ABC的内切圆半径r 如图Rt△ABC中,∠C=90°,∠B=30°,求,tan15° 如图,在Rt△ABC中,∠C=90°,sinA=0.7,求cosA、 tanA的值. 如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值 如图,RT三角形ABC中,∠C=90°,BE平分∠ABC交AC于点e 如图,在RT△ABC中,∠C=90°,AC=4,BC=3在RT△ABC中,∠C=90°,AC=4,BC=3,以c为圆心,r为半径的圆与直线AB又怎样的位置关系?为什么? 如图,Rt△ABC中,∠C=90°,AB,BC,CA的长分别为c,a,b,求△ABC的内切圆半径r. 如图,在Rt△ABC中,∠C=90°,CA=5,CB=12,以点C为圆心,CA为半径作圆交AB于点D,求BD的长需要详解,谢谢. 如图,Rt△ABC中,∠C=90°,AC=√2,BC=1,以C为圆心,CB为半径画圆交AB于D,则AD的长为( )