傅里叶定律中的负号的物理意义为:

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 11:30:03
傅里叶定律中的负号的物理意义为:
x\YsSז+~ڃ,LP e!\CyutqTxl ` 6gl˒l=DHz/g-ɤ]oskysw[KqktZl_5Bual|I/*>_-,g556OةVALY [G=tҬJPV5؞bސRgsw;~:~_oznZ$?B:'5ktY<:رщSvP%ʎBM&Vz;P~',MhF]~ Ԝp[V`sՃ%k4@0 4j%s_!+ byL5LuVNBտZ]&l/O|eBS6Nkcꑩގ󍟲IڬLǹOk}&tU@O7XGbnBh묑Y>+`, dRvPL Xh$ ҅GҔ9T!Q݋}JO$k޳w:8SC*ra$UzVk㠰 ]+W sS^=@iHkXd?55r@id;M&5H e'AHc SZ)XQeҞ-_}^`E K>'u6ڙڻ|kx;yM7j?G!`9YN z@oa/>LhwJ_M`"9o]qC`Lz;Ix*osinM-89"*YcQ;:f2y_J+OHr, b^?!ZZpJ`j + \n67`7+pH:x(}`rz}ߛz |Yi7vw'C}a54ƆP=H8L1m \H9fK.IwD`>1^[.8Ɇ{LJ$R)&;)|+LѮuݷxH` ץ3^+SK,ĐurZc M2Zrt.NǏeND[9!-"(;"ܡ=:?J>XctW17vE.%V XWQ=Y>tn>="|j8{@P6;#()%|:ga>7o{Gΐ%Z$@*?]*ƨ uk 1 #| ϩfCoXCЯ' ~]w4]oCC cC`6 s M>^-SLKգh(5:te뙆E8ӫpމj g][s^G{!D9 t[pKoC@o]i~.>:i^P:c6{ "b\ ɢp)OdJ]Yv>2 =RI0e7Tз1 iWcB1XEG"i|.jU|9/%Nyɶ 5ꬡw;5W1RjUL>[*H hiTBz(F6@ 85nB1[}qJ5HueR1YBE'H(&Q9P41&8"O8fh#'9{99*rX1A}n $3IY=Kr:\~Mdhf'cOnzXL;fCQT>Bmk/a2Fx QVk5~-Df{Xfr'ЁgP5LG(L*:`o3 4Գ ?LK+-X ]ڲ+q{dM K1l g>Q5OrEsû1k@-tq#&}/iA?h]vZ5 dOaykX ~9hox͛e+ foU=(ldK ͚y%1eSyY\yE:beC B+BjehإJ٢MޛK@C )FWa jobQ0W|2oISjy_;^}r&L;'p9ǥ Q#/P[;g: O1 =,ksfJc "R3?qic,3VtNI]厯9VR#L!mdvǔׇ5|ȉL?\Lhw@m -+ G(a&O9:D^rTSl1k[2O?!?C|jAO/!h$)"&ܦ%\<|?ê*G`\v,AKN[}*X~CH2Y<: uėe7B4SSeNXG$zNۢkgq !Tx;2iifgeGIkv"I?Y#[q:X 8H~m?S/gYrȏHV?d=͌Vz%^^7G]f|OڀE p5^H^.t<;yйD5k#[#^27b!5-ݻA{qA"N^Rh?lSkKZGWtTSBZm0)^l17SXIP/9n477Jׁ( EpCNuD:MN-R|We(/~h^iԅtaQSl 0A}[P׃$6Dl葖[d M1dFU Ǧ#J ` [>H{xWC;Yr}SP{J;432~Ҙ!#96D4{lg2/ٍSXb=24^Z.3G+u 'J]݁/zbـuʯR=7~vA ;>cA&S(Gk1/!w:9#nOO^wqKKHxg5#1g0trBWDf3D>rV=> .aD/A rT;d\\d\;͢Hꜿ?e>!62mNP-|QF `QA4J}D۸ỈU35YnPDWF ]~p&nӚ 4<СM]r'̧08XBH;AQ˃{Ly;r, 76@h^ ^2lSS@?j6:%Mz~>Yžf8L⌥ٹR;kJ! ܕ 6F D-Wvf5?]^:ض\b#'l2kL8SMM`-J'H!ĤwA10֩xB-`;qk=5AaRC9ZZPf [S08HM1i}7Ts788SUVBk'S, )VE凞OTlCqs_Z@L=P;}L-֟3sG$GPz@ȕ.ǐ[@XɴRI<5c{+ )2Jt/$t.\yu5h_؏{=~ ߨ)S&Nʦ)b\_߇'['.A:u:cI=ZL%@Eaۉ%*D,[TMw ꄇ$2?FQfke槾  22#DA ^|zwaU*{󾄎k> r@L 3bQr yֻb%щaA5 -:/UȜ>FrJ! xNϼN讐yo[pyPYk%,5}Z~(ќG.L5LOD&kt8_Wj܀#^),'q>JTO͛$ Í:ou0NJb{mXǺ@45ǥ2dO{xOć 4]O`"'XM7ȰAu w.!FR]Z _Gߐe_ nhYV!')3NJn_b?Bp25Dypg\R2/mZ p2) ^klCWtDT Zՠ{=ZZ^܋K}/^VXMbq?d(*Fvtp/Ex.л&H>)griJ(k'Mސ2 || wZi; u[ Y_i}Xi+gũbImkVJZU8Wi ݲXg&~+( vrO>3$`HL0V~KRއ 慠N?Ay^ g=\Hq_Tc6l]WdXWQ%«-*̆L6PO!Thc⑌Tv[A24c&K˷ږV*i6@ogzS ,s C yAR+>1FuJ,]$o&nKueynScJ{eh/Tpul_jboE_A.>xGy %fu?fRiY筌>zHwgE?2 dr0qD2QO8 =eQ`tT[6\G >'|& uMV!\,Wv`+Q0ɳ|\i=X-UOޚ_w747JY4&:C,U;9V,ƜzaaƝB#+ N]4gG)u_8R)p4h&_?R 2I|^4v[>(Qsw؜#fPma'k 7>(Hڽ3R~>m#)X6AI: }:N<>Oqݻ>YZ84G6uLTH yOSb9Hs]s7Jv(#aڧZt=ʉ*4o OUѦ]5߄Y FD&`L7MV e6]ٻ&_{0ݨZ qe@1gS JK 98r s="!I&㕪(*RĞPr&lvya(ݔ2fsivw7Jg`2yьn7C δm:&* Ü"%_эq9RШ~w J>qy8wu+`U3nNw68 ;ƴvBeÎ\)74\٢ bFk/$)%1P`Y:cs9Rj{9 I`jSA ɓ9ߨ"<|fɳh ccvکm$V'9oW#xeS.eeL]9j(#ǘ"8jPOad#F% jG{Dѓy 0B+{H7 jǒQˤA8.cw $o[X̶2J˴ޜbTiR(H5Ng҅iL:^KAFce9|Y)a+Kx bթz6{ipc?Y3̪FzrB3_qqI%]P+wtn7!{ 4[ϝ?ne S,UN?;$|z//#+lFPҦE.wMЁ J' |e$Ou Wb90*/owNnltK|XV@$/!j֤ 'gOQ,v#8ƻ~f65NƂ+%zpR/T&oMDzҎܧZ}%Čd Qs{O'_.EL_x٬s> N"HOap Edښ$~;?6ONĀts@ؕiuuBBPU#f!׬5+{x(VqEt.{ TaRL=3 A/Em)4xx:MVsL9R1w~_B[bu%t%ؿ&4 n7^꟤pTr6~`F=kp#Ǯ/\ ^(w n ļuÉq7hu:B4˲v%f;TI>9),q~BDoTx~Evߓi-~@)pdl>+ѓS#Η $gb¹#T"k *Q񥽝oy,LY^\R# <@<)kpTWާ 3k=ExʀJXXXNRЈ67V:A 8IAq@{Ǟij𖡲A{P#`)w#$A ܧu8:Ȗ8}; \4YҲƧ;2P#?UOJ-ѧ(.uq6_ 8<APKW$Յ<#!VD1[аJ٩P]Pz`d馲UZ+f\-XjsGF~]!/B>UP/1IURlZݱ^B" [O/UT"Q\O8F&&ԩq_F4´ qWLS=G&j-Q)EisGlv/YA;Y)Ґk|Dw+ 7dϿሹ}7#0*.v%vqa`)Le%2/fFmcĴ#k٠4Go[xtT}ySKbn3-SN4$ij?Ld#K!iyoSxي: gay e׭ ?>{9y0F?Yo>4l Uɿ o7$^qV֐sˏzQ۽F/u'~?P5Z s` -YNSQs`ߩ)6D8ER0T=_74(:HA|U#l17(gMP)NŃTnZwP M!1J.\H5bCeXC؀bW鲳.e~ԇoW5PTspRTU{隙bg= ׶u5_T,.UEl9S(]j8]j4~ijtI\P S[IfQSdF5`ύ2䒛*nLk]  %8 EuQowp BUkROY{Ş<bm kp uc[#k4JK(Lm.`C5c^^ ^k?p `H5|L䯽dL8Lkimڶ@mOӤ$ԗ1U_mŴ撥AX6?ב퉽_v!G

傅里叶定律中的负号的物理意义为:
傅里叶定律中的负号的物理意义为:

傅里叶定律中的负号的物理意义为:
表示传热方向与温度梯度方向相反 λ表征材料导热性能的物性参数(λ越大,导热性能越好)

一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-V...

全部展开

一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径?:米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
望采纳。

收起

傅里叶定律中的负号的物理意义为: 化学能量变化中的大小判断、如果两个化学反应中,能量变化分别为-100kj/mol和-200kj/mol,请问,哪个更大.这里的正负号是否与物理中速度中的正负号代表的意义一样,不是代表数学上的大小,而是 热传导傅里叶定律是怎么推导的? 如何快速判断感生电动势的方向?电动势物理表达式的负号的意义是什么? 已知甲的速度为2m/s,乙的速度为—3m/s,这里正负号的物理意义是表示运动的方向吗?如果不是请修改,我觉的这里正负号的物理意义是表示位移的方向,但是不确定。 物理中的变化量,是绝对值,还是可以带负号的呢?物理中的变化量,是绝对值的大小,还是可以带负号的呢? 物理中的矢量前面的正负号除了表示量的方向还有什么含义 物理学中正负号的意义分类 电势的正负号有什么意义? 已知甲的速度为2m/s,乙的速度为—3m/s,其中正负号的物理意义是什么?这里是表示运动的方向吗?如果不是请修改, 声音在空气中的传播速度为340米/秒,它所表示的物理意义是 高二物理中有一节带电粒子在电场中的运动的那些公式带不带正负号?比如说-q应不应该带上负号计算啊? 加速度为负的物理意义是什么 物理公式W=Uq的正负号问题电势能的公式,U是带有正负号的数,那么其中的q是带数值还是有正负号的? 通信中的调制在物理和数学上的意义? 霍尔系数物理意义霍尔效应的中的霍尔系数. 求高人解释一下光学中的复折射率的物理意义 光在真空中的传播速度为3x10的8次方米/秒,它所表示的物理意义是--------