y=2x/(1+x^2) 的极值?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:21:26
y=2x/(1+x^2) 的极值?
xSJ@wil4c3;D,TW.pF.[TO4 NCps_{a$`-q cÓuvV3 g1b_"+dJyq0pE1TT |NrQ3P RKMdD`T]N|0.TzU M,\qaJ3Qi8*pz^Gh lOB! oah(D2 aGn~+L Sf̄i fPȚn4?ךO_HǛ;r1 Iq*4mp'873Kg:OY}T  Rk/ 0:;캽{NZh"g_{`w^泸ȩ_u

y=2x/(1+x^2) 的极值?
y=2x/(1+x^2) 的极值?

y=2x/(1+x^2) 的极值?
ymin=-1,ymax=1

y=2x/(1+x^2)
yx^2-2x+y=0
要使方程有解,
b^2-4ac>=0
4-4y^2>=0
-1<=y<=1
y=2x/(1+x^2) 的极小值=-1,极大值=1

1+x^2-2|x|=(|x|-1)^2>=0
1+x^2>=2|x|
-1<=2x/(1+x^2)<=1
极值
ymin=-1,ymax=1

y'=[2x'(1+x^2)-2x*(1+x^2)']/(1+x^2)^2=0
则2x'(1+x^2)-2x*(1+x^2)'=0
2(1+x^2)-2x*2x=0
1-2x^2=0
x=±√2/2
y'=(1-2x^2)/(1+x^2)
所以-√2/20,y是增函数
x<-√2/2,x>√2/2,y'<0,y是减函数<...

全部展开

y'=[2x'(1+x^2)-2x*(1+x^2)']/(1+x^2)^2=0
则2x'(1+x^2)-2x*(1+x^2)'=0
2(1+x^2)-2x*2x=0
1-2x^2=0
x=±√2/2
y'=(1-2x^2)/(1+x^2)
所以-√2/20,y是增函数
x<-√2/2,x>√2/2,y'<0,y是减函数
所以x=-√2/2有极小值,x=√2/2,y有极大值
所以极大值=2√2/3,极小值=-2√2/3

收起

Y'=(2+2x^2-4x)/(1+x^4+2x)
令y'=0
解得x=1
所以x=1时为原式最大值
代入得y(max)=1

没悬赏,不答!