解方程2ax的平方+(4a+3)x+2a+3=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:19:42
解方程2ax的平方+(4a+3)x+2a+3=0
xSAJ@= $ΤŤ)-,-("Q5iC%3iW?%w5?Q/ Byh7 e!s8<6oeloT8iI aRdX_K`-ܖM,b*5B N Ql2uꝍ2μكv.}/LXs.[6AR* U; Yc"Q%VAz,X>op$J+RS»X@IJVRt JFZdM{TUͻ φJuX eZρkw~K^#.sa~ۮy

解方程2ax的平方+(4a+3)x+2a+3=0
解方程2ax的平方+(4a+3)x+2a+3=0

解方程2ax的平方+(4a+3)x+2a+3=0
2ax的平方+(4a+3)x+2a+3=0
2ax²+4ax+3x+2a+3=0
2a(x²+2x+1)+3(x+1)=0
2a(x+1)²+3(x+1)=0
(x+1)(2ax+2a+3)=0
x1=-1,x2=-(2a+3)/2a

2ax的平方+(4a+3)x+2a+3=0
(2ax+2a+3)(x+1)=0
x=-(2a+3)/2a或x=-1

把常数项移到右边,得2ax^2+(4a+3)x=-(2a+3).
二次项系数化为1,得x^2+[(4a+3)/2a]x=-[(2a+3)/2a].
配方x^2+[(4a+3)/2a]x+(4a+3)/4a=(16a^2+24a+9)/(16a^2)-(16a^2+24a)/(16a^2)
[x+(4a+3)/4a]^2=9/(16a^2).
降次x+(4a+3)/4...

全部展开

把常数项移到右边,得2ax^2+(4a+3)x=-(2a+3).
二次项系数化为1,得x^2+[(4a+3)/2a]x=-[(2a+3)/2a].
配方x^2+[(4a+3)/2a]x+(4a+3)/4a=(16a^2+24a+9)/(16a^2)-(16a^2+24a)/(16a^2)
[x+(4a+3)/4a]^2=9/(16a^2).
降次x+(4a+3)/4a=±3/4a,
即x+(4a+3)/4a=3/4a,x+(4a+3)/4a=-3/4a.
方程有两个不等的实数根x1=-1,x2=-(2a+3)/2a.

收起