多边形面积公式已知多边形各顶点的坐标值,求面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 18:31:56
多边形面积公式已知多边形各顶点的坐标值,求面积
xTN@Y$6* T -yahbZh(]£8 |L+~w< Tj˙s}ȹqR;>z4<: xA:er%.QOe/8( Z]!veͿy{ldaaÒnBh :1S .]ƚ5'X{hn~Qq%.,^L%Td!H^ "3 8.dqV*7?9A@ˉA eV SEw2`ȌuBM|аn~k?eS?C&&E,3 1R6"f90p*~AVސ%, CTJ뵡oذc,=~y4 E2մH ]bKZs# s8

多边形面积公式已知多边形各顶点的坐标值,求面积
多边形面积公式
已知多边形各顶点的坐标值,求面积

多边形面积公式已知多边形各顶点的坐标值,求面积
正多边形内角计算公式与半径无关
要已知正多边形边数为N 内角和=180(N-2)
半径为R
圆的内接三角形面积公式:(3倍根号3)除以4再乘以R方
外切三角形面积公式:3倍根号3 R方
外切正方形:4R方
内接正方形:2R方
五边形以上的就分割成等边三角形再算
内角和公式——(n-2)*180`
我们都知道已知A(x1,y1)、B(x2,y2)、C(x3,y3)三点的面积公式为
|x1 x2 x3|
S(A,B,C) = |y1 y2 y3| * 0.5 = [(x1-x3)*(y2-y3) - (x2-x3)*(y1-y3)]*0.5
|1 1 1 |
(当三点为逆时针时为正,顺时针则为负的)
对多边形A1A2A3、、、An(顺或逆时针都可以),设平面上有任意的一点P,则有:
S(A1,A2,A3,、、、,An)
= abs(S(P,A1,A2) + S(P,A2,A3)+、、、+S(P,An,A1))
P是可以取任意的一点,用(0,0)时就是下面的了:
设点顺序 (x1 y1) (x2 y2) ...(xn yn)
则面积等于
|x1 y1| |x2 y2| |xn yn|
0.5 * abs( | | + | | + .+ | | )
|x2 y2| |x3 y3| |x1 y1|
其中
|x1 y1|
| |=x1*y2-y1*x2
|x2 y2|
因此面积公式展开为:
|x1 y1| |x2 y2| |xn yn|
0.5 * abs( | | + | | + .+ | | )=0.5*abs(x1*y2-y1*x2+x2*y3-y2*x3+...+xn*y1-yn*x1)
|x2 y2| |x3 y3| |x1 y1|