设A是m×n矩阵,B是n×r矩阵,已知秩(B)=n,AB=0,证明A=0证明:R(B)=n,知B的行向量线性无关,设其行向量组为:B1,B2.Bn,将B按行分块得B=(B1,B2.Bn)请问老师为何是B=(B1,B2.Bn),而不是B=(B1,B2.Br)?不是r
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 15:27:22
xRN"A~9JㆁЏ`8w;dxC.l(QDMUt̜xx1:χP=C7o !Isz:}0 GבԨeeVr2P`ȀL5dj+3ήʴ6ܰS-VjrVRq>
w/o!ш'8L42J4bjA@VA
[X-\Ob<6rDf)Je=(d9y]s
设A是m×n矩阵,B是n×r矩阵,已知秩(B)=n,AB=0,证明A=0证明:R(B)=n,知B的行向量线性无关,设其行向量组为:B1,B2.Bn,将B按行分块得B=(B1,B2.Bn)请问老师为何是B=(B1,B2.Bn),而不是B=(B1,B2.Br)?不是r
设A是m×n矩阵,B是n×r矩阵,已知秩(B)=n,AB=0,证明A=0
证明:R(B)=n,知B的行向量线性无关,设其行向量组为:B1,B2.Bn,将B按行分块得B=(B1,B2.Bn)
请问老师为何是B=(B1,B2.Bn),而不是B=(B1,B2.Br)?不是r列么?
按行分块,按列分块 有什么区别?书写方式一样么?
设A是m×n矩阵,B是n×r矩阵,已知秩(B)=n,AB=0,证明A=0证明:R(B)=n,知B的行向量线性无关,设其行向量组为:B1,B2.Bn,将B按行分块得B=(B1,B2.Bn)请问老师为何是B=(B1,B2.Bn),而不是B=(B1,B2.Br)?不是r
这样写法不好, 按行分块应该写成 B=
B1
B2
...
Bn
B共有n行, 所以分成n个r维行向量.
这个题目这样证吧:
因为AB=0
所以 B^TA^T=0
所以 A^T 的列向量都是 B^Tx=0 的解.
又因为 r(B)=n=r(B^T)
所以 B^Tx=0 只有零解 (这是因为B^T 有n列, B^T列满秩)
所以 A^T 的列向量都是零解向量
所以 A=0.
设A是m*n矩阵,B是n*s矩阵,证明秩r(AB)
线性代数有关矩阵的一个问题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
设A是m*n矩阵,B是n*s矩阵,已知r(B)=n,AB=0,证明:A=0
设A是m*n矩阵,r(A)=r,证明:存在秩为n-r的n阶矩阵B,使AB=0
设A是m*n矩阵,B是n*m矩阵,其中n
请解一线性代数题:设A是n*m矩阵,B是m*n矩阵,其中n
设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则( ).(A)r>r1 (B)r
设A是m*n矩阵,B是n*m矩阵,证明:若r(A)=n,则r(AB)=r(B).
线代一个问题 设A是m*n矩阵,B是n*s矩阵,C,是m*s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C)
设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为 r1,矩阵B=AC的秩为r,则A ,r>r1 B,r
设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是A 大于m B 小于m C 等于m D等于n
4、设A是m×n矩阵,若存在非零的n×s矩阵B,使得AB=O,证明秩r(A)﹤n.A =
设A是m×n的矩阵,B是n×p的矩阵,证明:若R(A)=n,R(AB)=R(B)
设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵
线性代数 秩 已知:A是m*n矩阵,B是n*s矩阵,AB=0结论:r(A)+r(B)
设A是m×n矩阵,B是n×s矩阵,已知秩(B)=n,AB=0.证明A=0.
设A是mxn矩阵,B是nxm矩阵,且n>m,则|BA|=0.解析:由于BA是n阶方阵,秩r(BA)