全等三角形的判定 .证明过程是根据什么写出来的.我就在这迷糊 不知道为什么它等它.那位老师 帮帮学生啊》

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 23:09:36
全等三角形的判定 .证明过程是根据什么写出来的.我就在这迷糊 不知道为什么它等它.那位老师 帮帮学生啊》
xYnHB5K3S]@з 3?@/Z*y-KZjZl).f<EIqa&/ODM#owj[-)۳u.wHzD7G9ٱ<8mW8gLd:˟Mc譂 ~d- G?ݶU?oۏ|?Nds|zTkRSSO~'^[h^8ْ4Zq.!\xfX+#s\|ETn850{Og&:ko$uy_ ԩ=ĕ1̇׷ W3 b?@zǾ:{F1o`}~Zb󳊔iZxUdWWE2W}>2>9tE@""Ȝ\E]E8tX}/*/Ӻ~}_\«x(_*F**F,0:k {V=A)./}ӗ}B?Iaw,fE>qZc8.0).îVįxta+?ly =$Kʀ Wש0?xD0,ߜݖ9Θw3~@o ADkKg; ddZ9:Bi3) _D71dq-B7V7ϟCܯX,[s-Jj=xظ/*"u^@x'vj2㙋"t7/n k%"sF Œx_+a_1~RR[ȓY0m=w{yiD-H ڡ bAew9AG7'֊ʆf5`#LwJ*PF.s*}jq?9Ъj5{=^?et2Z)z;[_w*L{![g7Ud͢FJP

全等三角形的判定 .证明过程是根据什么写出来的.我就在这迷糊 不知道为什么它等它.那位老师 帮帮学生啊》
全等三角形的判定 .证明过程是根据什么写出来的.
我就在这迷糊 不知道为什么它等它.
那位老师 帮帮学生啊》

全等三角形的判定 .证明过程是根据什么写出来的.我就在这迷糊 不知道为什么它等它.那位老师 帮帮学生啊》
边边边.边角边.角边角.角角边.  能够完全重合的两个图形叫全等形.
知识点二:全等三角形
要点诠释:
  能够完全重合的两个三角形叫全等三角形
知识点三:对应顶点,对应边,对应角
要点诠释:
  两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.
知识点四:全等三角形的性质
要点诠释:
  全等三角形对应边相等,对应角相等
知识点五:三角形全等的判定定理(一)
要点诠释:
  三边对应相等的两个三角形全等.简写成“边边边”或“SSS”
知识点六:三角形全等的判定定理(二)
要点诠释:
  两边和它们的夹角对应相等的两个三角形全等.简写成“边角边”或“SAS”
知识点七:三角形全等的判定定理(三)
要点诠释:
  两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”
知识点八:三角形全等的判定定理(四)
要点诠释:
  两个角和其中一个角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”
知识点九:直角三角形全等的判定定理
要点诠释:
  斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”
三、规律方法指导
1.探索三角形全等的条件:
  (1)一般三角形全等的判定方法有四种方法:①边角边(SAS);②角边角(ASA);③角角边(AAS);④边
     边边(SSS).
  (2)直角三角形的全等的条件:除了使用SAS、ASA、AAS、SSS判定方法外,还有一种重要的判定方法,
     也就是斜边、直角边(HL)判定方法.
2.判定两个三角形全等指导
  (1)已知两边
  (2)已知一边一角
  (3)已知两角
3.经验与提示:
⑴寻找全等三角形对应边、对应角的规律
  ①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.
  ②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.
  ③有公共边的,公共边一定是对应边.
  ④有公共角的,公共角一定是对应角.
  ⑤有对顶角的,对顶角是对应角.
  ⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)
⑵找全等三角形的方法
  ①可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;
  ②可以从已知条件出发,看已知条件可以确定哪两个三角形全等;
  ③从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;
  ④若上述方法均不行,可考虑添加辅助线,构造全等三角形.
⑶证明线段相等的方法
  ①中点定义;
  ②等式的性质;
  ③全等三角形的对应边相等;
  ④借助中间线段(即要证a=b,只需证a=c,c=b即可).随着知识深化,今后还有其它方法.
⑷证明角相等的方法
  ①对顶角相等;
  ②同角(或等角)的余角(或补角)相等;
  ③两直线平行,同位角、内错角相等;
  ④等式的性质;
  ⑤垂直的定义;
  ⑥全等三角形的对应角相等;
   三角形的外角等于与它不相邻的两内角和.随着知识的深化,今后还有其它的方法.
⑸证垂直的常用方法
  ①证明两直线的夹角等于90°;
  ②证明邻补角相等;
  ③若三角形的两锐角互余,则第三个角是直角;
  ④垂直于两条平行线中的一条直线,也必须垂直另一条.
  ⑤证明此角所在的三角形与已知直角三角形全等;
  ⑥邻补角的平分线互相垂直.
⑹全等三角形中几个重要结论
  ①全等三角形对应角的平分线相等;
  ②全等三角形对应边上的中线相等;
  ③全等三角形对应边上的高相等.
4.知识的应用
  (1)全等三角形的性质的应用:根据三角形全等找对应边,对应角,进而计算线段的长度或角的度数.
  (2)全等三角形判定方法的应用:根据判定方法说明两个三角形全等,进一步根据性质说明线段相等
     或角相等.
  (3)用全等三角形测量距离的步骤:①先明确要解决什么实际问题;②选用全等三角形的判定方法构
     造全等三角形;③说明理由.
5.注意点
  (1)书写全等三角形时一般把对应顶点的字母放在对应的位置.
  (2)三角形全等的判别方法中不存在“SSA”、“AAA”的形式,判别三角形全等的条件中至少有一条
     边.
  (3)寻找三角形全等的条件时,要结合图形,挖掘图中的隐含条件:如公共边、公共角、对顶角、中
     点、角平分线、高线等所带来的相等关系.
  (4)运用三角形全等测距离时,应注意分析已知条件,探索三角形全等的条件,理清要测定的距离,
     画出符合的图形,根据三角形全等说明测量理由.
  (5)注意只有说明两个直角三角形全等时,才使用“HL”,说明一般的三角形全等不能使用“HL”.
6.数学思想方法
  (1)转化思想:如将实际问题转化数学问题解决等.
  (2)方程思想:如通过设未知数,根据三角形内角和之间的关系构造方程解决角度问题.
可以了吧.