1乘2乘3……乘100这100个数乘积的末尾有几个连接的0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 17:29:37
1乘2乘3……乘100这100个数乘积的末尾有几个连接的0
xU[RAJ5 Zd( h$>3FcvL _n!|X]Sݷ=+뫚,~.×^Ӹf+-&D[=Q]`^]yqU,"xT]h{RI:Enml#lۈƢm,Ʋmh üD%- 8 O>: ^:CMM=C⑫:!<<wWt;,tN#oeyo_n2d~/6S-q|R7;w;=s;l 8LBBwgwfHd~+*!&v2ptWEg%=d/ U4BcRܜU "?dӇMhr)T2 hx3dPkK.7$*5>/4bTκQ Mx*u'NMdMBq tۈpk_LvA&MU{evًwN0C6Đl,o1 % ]7@NzK=$G"B^:s 9HBbx, 2$.owjO(`\tچY6BJ҉ehY'Rn>Mn|]'u% |$S0&CM8d 3nagTmq"21t?SŀJ²Q0μk7Ku Y0ٗ\#K6q3_%|`X3=? }X_#

1乘2乘3……乘100这100个数乘积的末尾有几个连接的0
1乘2乘3……乘100这100个数乘积的末尾有几个连接的0

1乘2乘3……乘100这100个数乘积的末尾有几个连接的0
从1到10,连续10个整数相乘:
1×2×3×4×5×6×7×8×9×10.
连乘积的末尾有几个0?
答案是两个0.其中,从因数10得到1个0,从因数2和5相乘又得到1个0,共计两个.
刚好两个0?会不会再多几个呢?
如果不相信,可以把乘积计算出来,结果得到
原式=3628800.你看,乘积的末尾刚好两个0,想多1个也没有.
那么,如果扩大规模,拉长队伍呢?譬如说,从1乘到20:
1×2×3×4×…×19×20.这时乘积的末尾共有几个0呢?
现在答案变成4个0.其中,从因数10得到1个0,从20得到1个0,从5和2相乘得到1个0,从15和4相乘又得到1个0,共计4个0.
刚好4个0?会不会再多几个?
请放心,多不了.要想在乘积末尾得到一个0,就要有一个质因数5和一个质因数2配对相乘.在乘积的质因数里,2多、5少.有一个质因数5,乘积末尾才有一个0.从1乘到20,只有5、10、15、20里面各有一个质因数5,乘积末尾只可能有4个0,再也多不出来了.
把规模再扩大一点,从1乘到30:
1×2×3×4×…×29×30.现在乘积的末尾共有几个0?
很明显,至少有6个0.
你看,从1到30,这里面的5、10、15、20、25和30都是5的倍数.从它们每个数可以得到1个0;它们共有6个数,可以得到6个0.
刚好6个0?会不会再多一些呢?
能多不能多,全看质因数5的个数.25是5的平方,含有两个质因数5,这里多出1个5来.从1乘到30,虽然30个因数中只有6个是5的倍数,但是却含有7个质因数5.所以乘积的末尾共有7个0.
乘到30的会做了,无论多大范围的也就会做了.
例如,这次乘多一些,从1乘到100:
1×2×3×4×…×99×100.现在的乘积末尾共有多少个0?
答案是24个.