求和 已知abc=1 求:a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 19:40:51
求和 已知abc=1 求:a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
x){7=41)P(~ϬD}$DmCM$}d$3( d$tF$1GΆRw5@131P?Y'(O(@@s A&k>jXGt

求和 已知abc=1 求:a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
求和
已知abc=1
求:a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)

求和 已知abc=1 求:a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
abc=1,
则ab=1/c,ac=1/b,bc=1/a
a/(ab+a+1)
=a/(1/c+a+1)
=ac/(1+ac+c)…………(分子分母同时乘c)
a/(ab+a+1)+c/(ac+c+1)
=(ac+c)/(ac+c+1)
=(1/b+c)/(1/b+c+1)
=(1+bc)/(1+bc+b)…………(分子分母同时乘b)
a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
=(1+bc)/(bc+b+1)+b/(bc+b+1)
=(bc+b+1)/(bc+b+1)
=1