关于鸽笼原理的一个问题现有一个长2R,宽R的矩形,问在这个矩形的面积之内两两间距离不小于R的点最多能有多少个?请用鸽笼原理进行证明.证明过程请务必详细一点,我的数学很糟糕.二楼的定

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:25:25
关于鸽笼原理的一个问题现有一个长2R,宽R的矩形,问在这个矩形的面积之内两两间距离不小于R的点最多能有多少个?请用鸽笼原理进行证明.证明过程请务必详细一点,我的数学很糟糕.二楼的定
xXKOY+VK#r帪('Qҙ"?G3lhfc)j 66`HIOݪ*asu3,Tǹ|;[^<32lKN:Íone|*dN`:! yG J.7msy,L%#qq ds7.qX-Pr~c}?`;~ryO~) 7 ZS֪*xgkQs/1!oVo0PGCCmCt+x;ùNweN>o[N{!,L={&#dF]:Wۗaˌϓtka^ltӮf2@%C6OϗYth` mu:;AN},O0ΰ5֯uלC%?_CM%ܗY~T}')햢S,oeB{xq]}M?9o&=4..D\ބ1 H r'ƌP} NCtt"֌'!G aAjYYAh0 $k!J`e#I_?F%Etæjd+@D^\*h肦fI˭c#`N Fl)~6bf }C4q Zʍ,ƍi[A7eQJk3b5ئ呗"E7:: x/Y*G7OlAgMFbɔNn4uHwG5`y6Fr}mC`s r؏:\Xn61TC[e6O%UyC>$hF%lv'(3g6ɛܲ[˰Y/F́@ScQ$ܻ9Um)^@j\.f6_4S\q]n=\p@ ɏ(1֙R.S^^0t(mPT/j=GEggDPDs+| wMQno(~Ŏʠ ]Yz 4h>&Idd~tB wVǯ7X/ aa~-ՒSGٗ:KdVX/ma_KN5{ԴƦ#3>{_͛جF{ Tue nҀ6QwaרM>hG΂*.y)A&1*} r@ŭ/Nӈ0YF_'/ytp/U}FRQ ꫿:΄8ٰFdA鮊uW(xweN~knh'++X1+J5c(%yQ#̴OoH,ʺɞeX6)͊4) =[C~ 0CI|[j?_f o

关于鸽笼原理的一个问题现有一个长2R,宽R的矩形,问在这个矩形的面积之内两两间距离不小于R的点最多能有多少个?请用鸽笼原理进行证明.证明过程请务必详细一点,我的数学很糟糕.二楼的定
关于鸽笼原理的一个问题
现有一个长2R,宽R的矩形,问在这个矩形的面积之内两两间距离不小于R的点最多能有多少个?
请用鸽笼原理进行证明.
证明过程请务必详细一点,我的数学很糟糕.
二楼的定义已经知道了,只是应用上还有些生疏。

关于鸽笼原理的一个问题现有一个长2R,宽R的矩形,问在这个矩形的面积之内两两间距离不小于R的点最多能有多少个?请用鸽笼原理进行证明.证明过程请务必详细一点,我的数学很糟糕.二楼的定
最多只能有 6 个点.因为边长为 R 的正六边形(它的六个顶点与其对称中心这七个点两两之间距离就是 R)放不进你这个矩形.证明也不复杂:矩形面积为 2R^2,而这个正六边形面积为 (3√3/2)R^2 > 2R^2.

鸽笼原理(抽屉原理)
"如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子."这个简单的事实就是著名的鸽笼原理,在我们国家更多地称为抽屉原理.
抽屉原理的更一般的叙述是:
有n+1件或n+1件以上的物品要放到n个抽屉中,那么至少有一个抽屉里有两个或两个以上物品.
此原理用反证法容易证明其正确性.
抽屉原理虽然简单,但应用...

全部展开

鸽笼原理(抽屉原理)
"如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子."这个简单的事实就是著名的鸽笼原理,在我们国家更多地称为抽屉原理.
抽屉原理的更一般的叙述是:
有n+1件或n+1件以上的物品要放到n个抽屉中,那么至少有一个抽屉里有两个或两个以上物品.
此原理用反证法容易证明其正确性.
抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度.下面我们来研究有关的一些问题.
问题1 某校初中部有30个班,每班平均52人.已知这些学生的90%都是在1978~1980年这三年出生的,问他们中有同年同月同日出生的吗
解:全校共有学生52×30=1560人,1978~1980年间出生的有1560×90%=1404人.
而这三年有365×3+1=1096天.
由鸽笼原理知道,至少有两个同学是同年同月同日出生的.
问题2 一个书架有五层,从下至上依次称第1,第2,…,第5层.今把15册图书分别放在书架的各层上,有些层可以不放,证明:无论怎样放法,书架每层上的图书册数以及相邻两层内图书册数之和,所有这些数中至少有两个是相等的.
解:我们先把这个实际问题抽象成数学问题.用xi表示第i层放书的册数(i=1,2,…,5).
若有某个xi=0,则相邻的一层放书册数等于它与第i层放书册数之和,结论成立.
下面考虑xi≥1(i=1,2,3,4,5)的情况:
(1)若x1,x2,…,x5中已有两数相等,结论成立.
(2)若x1,x2,…,x5两两不等,再由它们和为15,所以它们分别取1,2,3,4,5.我们容易验证,在x1+x2,x2+x3,x3+x4,x4+x5这四个数中不可能同时包含6,7,8,9这四个数(请读者验证).这四个数与x1,x2,…,x5总共九个数,但只能有8种取值,因此其中必有两数相等.
问题3 某个信封上两个邮政编码M和N均由0,1,2,3,5,6这六个不同数字组成,现有4个邮政编码如下:
A:320651,B:105263,C:612305,D:316250.已知编码A,B,C各恰有两个数字的位置与M和N相同,D恰有三个数字的位置与M和N相同,试求M和N.
解:首先仔细观察A,B,C.它们虽然均由0,1,2,3,5,6这六个数码组成,但同一数位上的数字都互不相同.由鸽笼原理知A,B,C三数中各数位上都有一个数字是正确的(即与M和N的相应数字相同).
再把D的各数位上的数与A,B,C比较,发现D中第3位的6和第6位的0在A,B,C的第3和第6位上没有出现,因此这两个数码肯定不正确.由已知D有三个数字正确,因此D中的3,1,2,5四个数字中只有一个不对.下面逐个讨论验证:
若3不对,则第2位的1对,因此这个数位上只能取6,第2位取1,第3位不能取2,5(因为2,5在第4,5位是对的)所以第3位取0,第4位取2,第五位取5,剩下第6位必取3,此数字为610253.
若1不对,则第1位的3对,第2位只能取0(因2在第4位是对的),第3位上A,B,C的数各为0,5,2,这三个数均不能取(因0已在第2位,而5,2已在第5,4位).因此,这时没有符合要求的取数法.
若2不对,则第1位取3,第2位取1都对.第3位可以取0或2,第4位只能取6,第5位取5.但第6位取A,B,C的数各是1,3,5,这3个数都在前面被取过,因此都不能取.这时也没有符合要求的取数法.
若5不对,则第1位取3,第2位取1,第3位可以取0或5(因2已被第4位所取),第4位取2,第5位可以取5,6或0,第6位只能取5(因1,3已被第2,1位所取).再回头校正:第3位不能取5,只能取0,这样第5位也只剩6可取了.此数字为310265____.
最后检验所有条件,可知610253与310265是满足这些条件的两个数.
问题4 在前100个自然数中任取51个数,求证:一定存在两个数,其中一个是另一个的整数倍.
解:我们用鸽笼原理来考虑.把这100个自然数分成50组,使得每组中的数(如果至少含两个数)是倍数关系,怎样分组呢 我们记
A1={1,1×21,1×22,1×23,…,1×26},
A2={3,3×21,3×22,…,3×25},
A3={5,5×21,5×21,5×23,5×24},
………………………
A25={49,49×2},A26=,A27=,
………………
A50=.
这50组数中包含了从1到100这100个自然数.根据鸽笼原理从中任取51个数,至少必有两个数在同一组中,这两个数中的一个必为另一个的整数倍.
问题5 17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题.证明:至少有三个科学家通信时讨论的是同一个问题.
解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题.设这6位科学家为B,C,D
若这6位中有两位之间也讨论甲问题,则结论成立.否则他们6位只讨论乙,丙两问题.这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,

收起

关于鸽笼原理的一个问题现有一个长2R,宽R的矩形,问在这个矩形的面积之内两两间距离不小于R的点最多能有多少个?请用鸽笼原理进行证明.证明过程请务必详细一点,我的数学很糟糕.二楼的定 关于鸽笼原理(抽屉原理)的一个数学问题六个人的宴会中 可以断定3个人互相认识或互相不认识 正解为 将六个人设为六个点(ABCDEF) 然后将A点与其余5个点相连(认识的用实线连,不认识 某养鸽专业户买了一定数量的鸽笼,发现把一批鸽子放进鸽笼时,如果每个鸽笼放6只,则有2只鸽子无处可住,如果每个鸽笼放7只,则正好剩下一个鸽笼是空的,请问这批鸽子一共有多少只? 关于马克思主义原理的一个问题如何理解世界的物质统一性原理?其现实意义如何? 关于马克思主义原理的一个问题如何理解世界的物质统一性原理?其现实意义如何? 养鸽子,设计鸽笼!帮我设计一个鸽笼,我家楼顶上有一个约20平米的阳台,大概正方形!想养鸽子,设计一个鸽笼,怎么设计可以最大利用空间?正方形两边放鸽笼,中间一条走廊,估计实用面积也就15 鸽笼原理的问题把1,2,3,4,5,6,7,8,9,10这十个小球按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于18. 2道关于初三圆的问题.1 已知正三角形ABC外接圆半径为R,求正三角形边长 周长 面积.2 一个圆锥的轴截面是等腰直角三角形 母线长为a 求圆锥表面积. 关于三年级面积的数奥题一个长方形周长30厘米,长和宽各增加4厘米,求现有的面积比原来的面积多多少平方厘米. 用鸽笼原理证明:在任意给出的n+2个正整数中必有两个数,它们的差或和能被2n整除.麻烦讲明一下,哪个是鸽笼,哪个是鸽子, 我要问一个关于圆面积的问题.要利用现有的两个喷水器修建一个矩形花坛,要求花坛全部能喷到水,已知每个喷水器的喷水区域是半径为4米的圆,问如何设计花坛的长和宽才能使花坛面积最大? 关于化学的一个氧化问题苯上连氧,氧后连任意R基,如何氧化它?生成什么? 一个关于数学二项式的问题,他让求常数项但是算完后是x的5-2r次方,r应该取多少才是常数项 一个关于高数偏导的问题 关于杠杆的一个问题 有12只鸽子,飞进5个鸽笼里,至少有一个鸽笼里会飞进几只鸽子 有10个鸽笼,为保证至少有一个鸽笼住两只鸽子,鸽子总数最少有几只? 一个关于相对论的简单问题请问相对论中的“相对性原理”与“迦利略相对性原理”有什么区别广义相对论中的相对性原理是?请问形式不变是什么意思