列表说明DNA 和RNA在化学组成,分子结构和生物学功能方面的主要特点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:43:58
列表说明DNA 和RNA在化学组成,分子结构和生物学功能方面的主要特点
x|sיᅡWQVDɪqRșxcKv&ydս. )"RD @>t7/N4I%SaRv;߾ߘtg_}2/F~Y2#SfUX Ѱ6,aD8k3փZ8רԢWqswO~|? =jTnnrόTMvQI3%Ux, ר)bhk .$與*oߟdJM3ydЋ#ޔK?L7jt 4jS[QhTftը oTvedG^ LE_xemv D[DӟinT9Q$4< }OvN?ܛ1Wf}Sw Y85'p}S>#֫a,:Q__%X_'t(=efwP>~0s BT'0E7@PLWUn;S*E*q&j4 љ/QD6؍p)ꭚUP15=i2x05 d RJ7{P2cRjy{&r,ʎ^w~|v=/(tל0:E8_ϒ 3x ` HP<I2ըu'3_%K+GKJ)TF}\8K+QG=U{) @ ) Q Κc?}aNfF`0:mΝF#s:m6D@ά簙hQJP'7*V).5ߌ9> @%C3E Ɵ6=?dz̯;랩TGy,n{Q=kl#+XSDzdFB߹8O郡:L@)q?YfwҜíast8MyO󃦸kpW=zHA&7 Uon7ݣ#ǝkv~@8LB^ug\3X Ec&tpWH.Kl2ɵ|tzjeS.4Nl@E0-Ua*ߤ@r1̗>9O>Q/-ﰈw`n^<ISe A't,sl>ZЖ=Xo8%PmuXT "u mr`g-a-3Lqi@~[)Vjb@bl#bN V. 3\-da]ݜ\ULP#JZ5Kaqo +AS1@+@Wue֞<ꞃvAjtgSw~q{W֏1K)AwGXq< o2Gt%d![ƏFu34gۜmӍ3p d,XՁ7` hpg0|Ӎ5Nf.?'nTDIp(| 9ge"|}4Bh Lv*XJGAEq݀zh`q/~m9hܳg0\83jCfAJsƟh5NaQ\+|ᾲ.td FqCK2 Ρ5,ـYeP)5 wL*U 4P9*M;_sxX:R\7˪ns~k3V')tp6f̭ž{HZHӯiлRfho:> Q onZ> [/]lTp1yҮ'v B)TO{|C;n2 TP&BB#^kJuzӃMJI .XiT"gj! Ԏr;,8-I2͹i$a|9q.4o_??f2oMftd⣸_>38 iR}Ar Aҍ@n=g֋Pq$fSY0 ΦG(!^"Fn0V D& Ea=:o5Fu 3ɛ0L*3՗ROn3*pNϼQa$04oU7I Tc+ng%ym[C9} j<LЊتbDS~ҁoqʰ[8k4S}p pdsbh{tu)I%V"\a}hvg4=oȫ喞Vm92Ӫ'# |wÙՒlQL$Z%|Mf*-&%¥ۂ-9cxH!V'.cf W HSF['IeNu0 lPC //?'?yH%PQ=Ń9*6,d=cCuTZy>(A S*F-ׄ6!{ % 6%TA"8^T~Gϟ{??+)Lh{FB}%9UhE%%m ív%nf4OlYȞ& jPݟqԫP ,9GO=V79L޿Q ܴ6 r{Xt*ē^͔m [K?ϣnn۳;wDRt"W5{_(c38$$e̥q~/_}52m15%+3\"brCECeUk5 E! ub zj& >חWIbjƓ8/:Y&^[}"zoOeZH:חn4_,{}݆~]Z]DŌ'NV\00XPulὟ{~ƒOFx +տOrdƻiL;|\p{aSJqB~:u 偂#ؚ܀o-ZVm5VrzdWk*hu˙z+ãy7+p$pHl:ZIH폊U>m~`0\\jfgй2 TCϵgD͉; ,Is6^s.[.5hP 7KAɃA?qoW,LiRKzQ)4ۧ[/ȅp { q:Uq&)g0fWPsqej#ˍ #CD+9lfR]RKe&ogJ3'@f Wq8b$\I>c'_xA:Ѩl+'fܜyr>]gi+a<QDt)Y.LgQ"jlt?N~vN#3uۥ'l60[:I"NJVSV[(f`5'il =?G-rxhvE! S85Q!G!i,yLF8AuD]qIY΀ftj3`mtEP:ߚHrNZ̟ÄG54qJ@'*`R7e1Z1L!&WLpL5ȵ wGHO#cy~$AȠU=9A ;q#⪗rk@鲄O$ *u!jK_EK[9MSاcvKB:&X`W^hi+ Rښ,t"ݦVVh_g{GO^g[EG;\Xnܡv/;/lt4pzWQr؞^TXgЃk)\("G"`R=syf|8,mF&ߜ(2jY(\v*ZF~ s .[1kӈWC:eH"UC)"1ܞ 1V2ս5Q_sՕ aizqEz$\907%mv[ H1|\_DPRՂYYan8KPf&v2_R< PA~-ڧmͫ5ju;iTj[|>-F{gE`C(>tՎmqHIby17JEGԘで*s{ڸrYnփ).CA̖}Oz,D!սgU:ZO8n !Nn4wx2)9A?!F:?NG1?ڛ5SWo QSYkå]/&o.ZgR5L2x>gܹ`0odR`Lq2jFg E ^*J教A6ob. ϐC#rGe"4%R}4,ƿ#c$|=17iܒ@McSJr1䱦6W2UnQE"QNi$bgXzf_[6pyIS[KJc7:6NٚArU&y&A6f%pUHH-lU.Ztkt!O_NY k :ym).Bn1v>Bў/k=ϯXflZY} rhx2Vk1;bI-!1쀋y~g4֫J:}eX p#YT͘r:f`uFFzx^N2 CJHWs4oF9%?W+A4LTޖ dyT Jv8`^a wad$./t) cWawH.$\[. )fFJ3 :-Ŵpg;W\~KWG`^I$u_.UtzVyW(DM2oITf赮j~.#>iS)WW~} _y2鯾bnYWۺ$!1|c2QyvA' -prP;uJdfh8#|8ۅSs!hf9˲WBo&fBxP-c+7$#614:Pxi%g92k' B2l,%Qy(Z&sֈu|VB5Tς" v@ j-uV%>*uLyrt AA$'yɕcEJ{F zafOK6q{~^ X~DW@ 'hˆ/=win24tM&sD[90je؅92z'SY ˶f{= IZ?oBP'Jz[el(8Pw<0ѨMiėئnKl]~' HoSp6}T7m]7o'S-9 ʛIqnsJptS]43. PiOW ңU[dΌc6 YuB❚vMe$6d;kh503zSu+=5Į^nAqF5*m:;=_ _rt:̔F2_ΖV_KIy[u(+Gnu a|%*%X!?vܺ{eu!?9z{$_AmrS@Eʲ4 #gU*ˣTq5D]v'ObC8Ȅ^}E׽0+I&ʅ&9M^ZJ-uKIzjYa2%1驎]ױ/d{??{غ;O|W~IJ>?# Wȭ_v9آX'R"$3RʼlcW۰\5I}kR:~X+G%IO!ϴ}3&+ 5 ďUmmOkQrS#VzX2;*Rv$jVZ烀x%. >]6]e,Xx6NN| 9;~7\XgW{9r9{lP6Wp&#յ͵60kCWm-:U%v

列表说明DNA 和RNA在化学组成,分子结构和生物学功能方面的主要特点
列表说明DNA 和RNA在化学组成,分子结构和生物学功能方面的主要特点

列表说明DNA 和RNA在化学组成,分子结构和生物学功能方面的主要特点
RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶).所以导致他们有以下性质上的不同.
1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键).RNA有,有PI.
2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团.
3.碱的作用:DNA耐碱RNA易被碱水解.
4.显色反应:
鉴别DNA和RNA+浓HCl RNA ------→ 绿色化合物
DNA ------→ 蓝紫色化合物苔黑酚
二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们.
DNA和RNA的鉴别染色
利用吖啶橙的变色特性可鉴别DNA和RNA.吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记.观察死亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体.虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用.
5.溶解性:都溶于水而不溶于乙醇,因此,常用乙醇来沉淀溶液中的DNA和RNA.DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA.
6.紫外吸收:核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害.当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml.用A260/A280还可来表示核酸的纯度.
7.沉降速度:对于拓扑异构体(核苷酸数目相同的核酸),其沉降速度从达到小依次为:RNA ; 超螺旋DNA > 解链环状DNA ; 松弛环状DNA ; 线形DNA也就是在离心管中最上层是线形DNA,最下面是RNA.
8.电泳:核苷酸、核酸均可以进行电泳,泳动速度主要由分子大小来决定,因此,电泳是测定核酸分子量的好方法.
9.DNA分子量测定最直接的方法:用适当浓度的EB(溴嘧啶)染色DNA,可以将其他形式的DNA变成线形DNA,用电镜测出其长度,按B-DNA模型算出bp数,根据核苷酸的平均分子量就可计算出DNA的分子量.
聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术.它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究 的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研 究和检测鉴定.过去几天几星期才能做到的事情,用PCR几小时便可完成.PCR技术是生物医学领域中的一项革命性创举和里程碑.
PCR技术简史
PCR的最早设想 核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”.
PCR的实现 1985年美国PE-Cetus公司人类遗传研究室的Mullis等发明了具有划时代意义的聚合酶链反应.其原理类似于DNA的体内复制,只是在试管中给 DNA的体外合成提供以致一种合适的条件---摸板DNA,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间.
PCR的改进与完善 Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶I的 Klenow片段,其缺点是:①Klenow酶不耐高温,90℃会变性失活,每次循环都要重新加.②引物链延伸反应在37℃下进行,容易发生模板和引物之 间的碱基错配,其PCR产物特异性较差,合成的DNA片段不均一.此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于 Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难.这使得 PCR技术在一段时间内没能引起生物医学界的足够重视.1988年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性也较高,只有所期望的一种DNA片段.但每循环一次,仍需加入新酶.1988年Saiki 等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus) 中提取到一种耐热DNA聚合酶.此酶具有以下特点:①耐高温,在70℃下反应2h后其残留活性大于原来的90%,在93℃下反应2h后其残留活性是原来的 60%,在95℃下反应2h后其残留活性是原来的40%.②在热变性时不会被钝化,不必在每次扩增反应后再加新酶.③大大提高了扩增片段特异性和扩增效 率,增加了扩增长度(2.0Kb).由于提高了扩增的特异性和效率,因而其灵敏性也大大提高.为与大肠杆菌多聚酶I Klenow片段区别,将此酶命名为Taq DNA多聚酶(Taq DNA Polymerase).此酶的发现使PCR广泛的被应用.
PCR技术基本原理
PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物.PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加 热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引 物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合 物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板.每完成一个循环需 2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍.到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝.
PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升.反应最终的DNA 扩增量可用Y=(1+X)n计算.Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数.平均扩增效率的理论值为100%, 但在实际反应中平均效率达不到理论值.反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进 入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素.大多数情 况下,平台期的到来是不可避免的.
PCR扩增产物 可分为长产物片段和短产物片段两部分.短产物片段的长度严格地限定在两个引物链5’端之间,是需要扩增的特定片段.短产物片段和长产物片段是由于引物所 结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3’端开始延伸,其5’端是固定的,3’端则没 有固定的止点,长短不一,这就是“长产物片段”.进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合.引物在与新链结合 时,由于新链模板的5’端序列是固定的,这就等于这次延伸的片段3’端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的 “短产物片段”.不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计, 这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用.
PCR反应体系与反应条件
标准的PCR反应体系:
10×扩增缓冲液 10ul
4种dNTP混合物 各200umol/L
引物 各10~100pmol
模板DNA 0.1~2ug
Taq DNA聚合酶 2.5u
Mg2+ 1.5mmol/L
加双或三蒸水至 100ul
PCR反应五要素: 参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+
引物: 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度.理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增.
设计引物应遵循以下原则:
①引物长度: 15-30bp,常用为20bp左右.
②引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段.
③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带.ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列.
④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带.
⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败.
⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处.
⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性.
引物量: 每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会.
酶及其浓度 目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶.催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少.
dNTP的质量与浓度 dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性.dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris.HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存.多次冻融会使dNTP降解.在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配.浓度过低又会降低PCR产物的产量.dNTP能与Mg2+结合,使游离的Mg2+浓度降低.
模板(靶基因)核酸 模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本. SDS的主要功能是: 溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀 核酸.提取的核酸即可作为模板用于PCR反应.一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接 用于PCR扩增.RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA.
Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜.Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少.
PCR反应条件的选择
PCR反应条件为温度、时间和循环次数.
温度与时间的设置: 基于PCR原理三步骤而设置变性-退火-延伸三个温度点.在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸.对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性).
①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因.一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则 需延长时间,但温度不能过高,因为高温环境对酶的活性有影响.此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败.
②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素.变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合.由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞.退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长 度.对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想.引物的复性温度可通过以下公式帮助选择合适的温度:
Tm值(解链温度)=4(G+C)+2(A+T)
复性温度=Tm值-(5~10℃)
在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性.复性时间一般为30~60sec,足以使引物与模板之间完全结合.
③延伸温度与时间:Taq DNA聚合酶的生物学活性:
70~80℃ 150核苷酸/S/酶分子
70℃ 60核苷酸/S/酶分子
55℃ 24核苷酸/S/酶分子
高于90℃时, DNA合成几乎不能进行.
PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合.PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的.3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min.延伸进间过长会导致非特异性扩增带的出现.对低浓度模板的扩增,延伸时间要稍长些.
循环次数 循环次数决定PCR扩增程度.PCR循环次数主要取决于模板DNA的浓度.一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多.
PCR反应特点
特异性强 PCR反应的特异性决定因素为:
①引物与模板DNA特异正确的结合;
②碱基配对原则;
③Taq DNA聚合酶合成反应的忠实性;
④靶基因的特异性与保守性.
其中引物与模板的正确结合是关键.引物与模板的结合及引物链的延伸是遵循碱基配对原则的.聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度.再通过选择特异性和保守性高的靶基因区,其特异性程度就更高.
灵敏度高 PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12g)量级的起始待测模板扩增到微克(ug=10-6g)水平.能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌.
简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应.扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广.
对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板.可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA扩增检测. PCR扩增产物分析
PCR产物是否为特异性扩增 ,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论.PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法.
凝胶电泳分析:PCR产物电泳,EB溴乙锭染色紫外仪下观察,初步判断产物的特异性.PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件.
琼脂糖凝胶电泳: 通常应用1~2%的琼脂糖凝胶,供检测用.
聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析.
酶切分析:根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究.
分子杂交:分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法.
Southern印迹杂交: 在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与PCR产物杂交.此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研.
斑点杂交: 将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析.
DNA是双螺旋结构,RNA是单螺旋结构的.
具体解释如下:
RNA指 ribonucleic acid 核糖核酸
核糖核苷酸聚合而成的没有分支的长链.分子量比DNA小,但在大多数细胞中比DNA丰富.RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA).这3类RNA分子都是单链,但具有不同的分子量、结构和功能.
在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA.近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒.类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA).hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程).自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进.目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸.
DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分)
脱氧核苷酸的高聚物,是染色体的主要成分.遗传信息的绝大部分贮存在DNA分子中.
分布和功能 原核细胞的染色体是一个长DNA分子.真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子.不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起.DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中.DNA病毒的遗传物质也是DNA.
结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3’,5’-磷酸二酯键相连构成的长链.大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等.有的DNA为环形,有的DNA为线形.主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基.在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%.在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶.40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和.一般用几个层次描绘DNA的结构.
一级结构 DNA的一级结构即是其碱基序列.基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中.1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖.自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立.如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等.现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来.
二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程.经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表.
一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似.A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近.Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名.这种构型适合多核苷酸链的嘌呤嘧啶交替区.1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA.

这种基础性的概念辨析问题就不要在网上查了,直接问老师或同学。

C/H/N/O/S/P

这种问题一般去贴吧问..
百度化学贴吧