1∕1×2×3+1∕2×3×4+1/4×5×6+1/6×7×8+1/8×9×10=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:38:10
x 1E
aL\EMx$LnӉ
gq5o߇qt7pD Roᆰ/'
;B?_.RM#Jt.W
poӋM3lz.t=×%/ (s9kkTa'#
1∕1×2×3+1∕2×3×4+1/4×5×6+1/6×7×8+1/8×9×10=
1∕1×2×3+1∕2×3×4+1/4×5×6+1/6×7×8+1/8×9×10=
1∕1×2×3+1∕2×3×4+1/4×5×6+1/6×7×8+1/8×9×10=
1∕1×2×3+1∕2×3×4+1/3×4×5+1/4×5×6+1/5×6×7+1/6×7×8+1/7×8×9+1/8×9×10
=1/2×(1∕1×2-1/2×3+1∕2×3-1/3×4+1/3×4-1/4×5+1/4×5-1/5×6+1/5×6-1/6×7+1/6×7-1/7×8+1/7×8-1/8×9+1/8×9-1/9×10)
=1/2×(1/1×2-1/9×10)
=1/2×(1/2-1/90)
=1/2×22/90
=11/90
3∕2×2∕1×4∕3×3∕2×……×101∕100×99∕100
1∕2+2∕4+3∕8+4∕16+5∕32+6∕64+7∕128+8∕256+9∕512
(1-1∕2)+(1∕2-1∕3)+(1∕3-1∕4).+(1∕99-1∕100)
(1-1∕2)+(1∕2-1∕3)+(1∕3-1∕4).+(1∕99-1∕100) 要过程和规律
1∕2×2∕3×3∕4×2007∕2008 脱侙计匴
2∕1*3∕1+3∕1*4∕1﹢4∕1*5∕1﹢…﹢99∕1*100∕1=
数列 1∕4+3∕8+7∕16+15∕32+31∕64+63∕128求和 急.
(1+1∕2)(1+1∕2^2)(1+1∕2^4)(1+1∕2^8)
1∕1×2×3+1∕2×3×4+1/4×5×6+1/6×7×8+1/8×9×10=
(-1*1∕2)+(-1∕2*1∕3)+.+(-1∕2006*1∕2007)
(1-1∕2;)*(1+1∕2)*(1-1∕3)*(1+1∕3)*.*(1-1∕2007)*(1+1∕2007)
(1∕6‐2∕7+2∕3‐3∕14)/(-1/42)
|1/2-1|+|1/3-1/2|+|1/4-1∕3|+………+|1∕100-1∕99|
-|4又2∕3-6又1∕3|-[(-2又1∕5)-(-0.8)-|-2又4∕5|]
(1)4.03÷12.5(2) 13 490+687×4925━ - ━━━━━━━━17 493×687-197 (3)13 290×18-﹙398.7×374+3 987×62.6﹚÷1又17分之13(4)﹙2∕1+3∕1+4∕1…30∕1)﹢(3∕2﹢4∕2 ﹢5∕2…30∕2)+(4∕3+5∕3+6∕
vb编程,1、求1×3×5×7…(共N项)2、1∕1×1∕3×1∕5×…×1∕(2n-1)3、2∕1×2∕3×4∕3×4∕5×6∕5×6∕7×…××2k∕(2k-1)×2k∕(2k+1)4、1²+2²+3²+4²+……+100²5、1∕(1×2)+1∕(2
1∕2×4+1∕4×6+1∕6×8…………1∕2010×2012=等于多少
(-8)﹡(1∕2-1又1∕4+1∕8)=