设F(x)在【0,1】上连续,在(0,1)内可导,且F(0)=F(1)=0,F(0.5)=1,试证至少有一点W,使F'(W)=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 02:31:53
设F(x)在【0,1】上连续,在(0,1)内可导,且F(0)=F(1)=0,F(0.5)=1,试证至少有一点W,使F'(W)=1
xŐ=N@2]ڱtRER.@EH0>LvuG{ގ`dha.6|" U>իմcMo23 1JRF\gUٽʎ*Md>uH_oݿơHB&l<"an`{?N0kApz*\`9ҵQp\~=|lsG. δ5ƫE#6xFnS(;  k

设F(x)在【0,1】上连续,在(0,1)内可导,且F(0)=F(1)=0,F(0.5)=1,试证至少有一点W,使F'(W)=1
设F(x)在【0,1】上连续,在(0,1)内可导,且F(0)=F(1)=0,F(0.5)=1,试证至少有一点W,使F'(W)=1

设F(x)在【0,1】上连续,在(0,1)内可导,且F(0)=F(1)=0,F(0.5)=1,试证至少有一点W,使F'(W)=1
设 G(x) = F(x) - x
G(0) = 0
G(1) = -1
G(0.5) = 0.5
所以 G(x) 的最大值必在开区间(0,1)中一点 w 达到.于是 G'(w) = 0,
即:F'(w) - 1 = 0 =====> F'(w) = 1