对坐标的曲线积分:

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:28:58
对坐标的曲线积分:
xT]O`+o 6MݸK/zYveSaָ/A_ 4$!zD^Ҙ4BACJry4B2Pa(}96Wfisj߭`e d;?vfj}Y%fi'n5961=+%/ jI9qR<{N N{+ ntFirqtIm;*?w;m8rx%zs' eDG~ Fp^4!ī. ph[d5r| -fP/%]!;bfyT"Y> y.^O( Ct_ ĘY D"UΌ8\lD

对坐标的曲线积分:
对坐标的曲线积分:

对坐标的曲线积分:
有两个方法:
第一:格林公式
x² + y² = 2y => x² + y² - 2y + 1 = 1 => x² + (y - 1)² = 1
圆圈半径为1,面积 = π(1)² = π
令P = xy² + 2y,Q = x²y
∂Q/∂x = 2xy,∂P/∂y = 2xy + 2
∮_L (xy² + 2y)dx + x²ydy
= ∫∫_D (∂Q/∂x - ∂P/∂y) dxdy
= ∫∫_D [2xy - (2xy + 2)] dxdy
= - 2∫∫_D dxdy
= - 2 · D,D表示的就是圆圈的面积
= - 2π
第二:参数方程
令x = cost,y = sint
dx = - sint dt,dy = cost dt,t∈[0,2π]
∫_L (xy² + 2y)dx + x²ydy
= ∫(0-->2π) [(costsin²t + 2sint)(- sint) + (cos²tsint)(cost)] dt
= ∫(0-->2π) (sin²tcost - 2sin²t + sintcos³t) dt
= ∫(0-->2π) sin²t d(sint) - ∫(0-->2π) (1 + cos2t) dt - ∫(0-->2π) cos³t d(cost)
= [(1/3)sin³t - (t + 1/2 · sin2t) - (1/4)cos⁴t] |(0-->2π)
= (- 1/4 - 2π) - (- 1/4)
= - 2π