数学:裂项是什么意思哪位大侠帮帮忙,急!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:43:34
数学:裂项是什么意思哪位大侠帮帮忙,急!
xWYOX+[""AR5aIZKP,Zb?񵓧ύqT8{N9keQ8v8ZҾJ93Y'#V87*svG ɡXSڷ)$`*RsGʸ6>%uƷ9#f+v}UTsnHƗSUc2&pJY|N5"̥xi/;,6lotݹLLͶvu Dag;R*6nebX's2yFE͐j=q,"Z[+-C8ZO Ko0%;y g1MCk'N"hk>b>{ܞELOk`_f%X`MrR/GxP e@U}D PuwG1QκU)k"A)+wꊳHddH8g[U: K2(ߜ>E29]+,|EBչ^=Olo`~%uppJ>VkT[/ )]2%G?J>69<.bl;'SoӾJB=:*ɽKi0s~ Y'BL2f1@_+Pl>s C7S 2e>|@Nfl#?#nlh&Wg0mr㼛 I!emb\\g ivEXaJq Gmٝ(7CSC;ƘK)|M0]%1bNvu ֵ^6R{A|pz{Qc(M&W_eAvGqڌc44yD`fc'*{d8fP_O9aä2$nZncΥiZwGMjmx}2֭p6%ƶr,U jhh  ⦡1A#h#ֻm%~\ǥ i(XG q7z0\[;բ##B2"JE [O({qk\P@hQGًn7_f2/Vrk76nI X9z'Wpa0h {"*,,X);y

数学:裂项是什么意思哪位大侠帮帮忙,急!
数学:裂项是什么意思
哪位大侠帮帮忙,急!

数学:裂项是什么意思哪位大侠帮帮忙,急!
裂项法
裂项法求和
这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5) n·n!=(n+1)!-n!
[例] 求数列an=1/n(n+1) 的前n项和.
设 an=1/n(n+1)=1/n-1/(n+1) (裂项)
则 Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)
= 1-1/(n+1)
= n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.
注意:余下的项具有如下的特点
1余下的项前后的位置前后是对称的.
2余下的项前后的正负性是相反的.
一、基本概念
1、 数列的定义及表示方法:按一定次序排列成的一列数叫数列
2、 数列的项an与项数n
3、 按照数列的项数来分,分为有穷数列与无穷数列
4、 按照项的增减规律分为:递增数列,递减数列,摆动数列和常数列
5、 数列的通项公式an
6、 数列的前n项和公式Sn
7、 等差数列、公差d、等差数列的结构:an=a1+(n-1)d
8、 等比数列、公比q、等比数列的结构:an=a1·q^(n-1)
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an= Sn-Sn-1
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项)
当d≠0时,an是关于n的一次式;当d=0时,an是一个常数.
11、等差数列的前n项和公式:Sn=a1·n+1/2·n·(n+1)·d
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式.
12、等比数列的通项公式:an= a1·q^(n-1) an= ak·q^(n-k)
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn=a1·(q^n-1)/(q-1)
三、有关等差、等比数列的结论
14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列.
15、等差数列中,若m+n=p+q,则 am+an=ap+aq
16、等比数列中,若m+n=p+q,则 am·an=ap·aq
17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列.
18、两个等差数列与的和差的数列{an+bn}仍为等差数列.
19、两个等比数列与的积、商、倒数组成的数列
{an·bn}、{an/bn} 、{1/(an·bn)} 仍为等比数列.
20、等差数列的任意等距离的项构成的数列仍为等差数列.
21、等比数列的任意等距离的项构成的数列仍为等比数列.
22、三个数成等差的设法:a-d,a,a+d;
四个数成等差的设法:a-3d,a-d,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
四、数列求和的常用方法:
公式法、裂项相消法、错位相减法、倒序相加法等.(关键是找数列的通项结构)
24、分组法求数列的和:如an=2n+3n
25、错位相减法求和:如an=n·2^n
26、裂项法求和:如an=1/n(n+1)
27、倒序相加法求和:如an= n
28、求数列的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an= an^2+bn+c(a≠0)
29、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求
(1)当 a1>0,d