什么是六维空间?有人说六维空间就像人面狮身像那样把本来不存在的事物结合的空间,是这样吗?还有五维和四维我好像有点混淆了,谁能解析给我知道?我要个具体解析.像:点.线.面.时间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 01:33:27
什么是六维空间?有人说六维空间就像人面狮身像那样把本来不存在的事物结合的空间,是这样吗?还有五维和四维我好像有点混淆了,谁能解析给我知道?我要个具体解析.像:点.线.面.时间
x[rIz~g0_]eDh:ĝ}#qs]aCli`J[oLs$S%c75$WEqWB,θ"a㕹^LtȽEaoWRaTJ3jwl1?wӭV5` Jv # Ɖ}8 ǭA,Z97ڔgbpyp_D{P:aMDa~ JVDчuw 5m՗_VrwZu({n?ƺä4IBl(A: /%,J^ygN^K3QZn-{Y1 w ~e GK~N1鮀@ǮRw L܃Ŭ#z"1Qwl"7poBɈNBtȄn܊V.ͷ<B@KQ:EHӒCQi֋Z~{]2HH;uIqrhG;A"罎{C1ũXajČtRʾ䥨vy;b"03I2;SWne+ʂuFuws"xUo F]/d (J:ڻ$h8R^ކVV,+2#uRPT4:s, ICG8ɀ39y5ĈߖVYcz-\:XnrkΤ{n>)6~7wzH{cCHm}b>rsk~nW( XTǡW_$w^gGv8P#Yb U;"Sd3_. V̱$}5IC1O !xZ&w/ u&?VcAc#shuDһ: 3ˠT ;M2(xk[joרPS8ZN&2TNQ2pb>D6 8&-Ql8$kX+ Bn[5b<_ӒL^`-5u%X %`&AJCK1B]hf&b\oZD!Ȋn/ wq& Y)D8<]L ^nAĉ&Ŧ3bom~ y>gcSJ(|p"rY=PEefЪC=ݍyM`*RfM>2l#+ͲHBtD` ƀn|0F9xZa ;^HG`!Bt\"/] -zGU&?tW g%Lm g36յdDQ ^*ǟWEYiN'8ڍ"BwxttnDx#w²#3e?TmV%Q&nr9, '°us60A~lԵT$ .NDY$M /,f8L":\} Kٓw}&,&ٟ{oL] oٹ`7dFx4pxxo G-_YYπD$X;bbb`O7$i=0/ >91`?ffh;S2ϙ T?5;0 sD?wpo,}oVe c-wHvO: et<ȉfE3.B]2ܜ-̥31 `5$X"M%*Ya APkS6 E"~h@[eEζ!G*/.ݬW.8l:T>2|;]V2KϩpTytdZҺcϡtz^%ރutR*_yWcڎx 3>%tK^Ґ :5)~H[jDXEՙbW$ RV^# k[~<& ZU/7FL,^aBnwNM ;7ϋűkňu` xĆ.>eA>JCHU7oԓ\Wd҅? ("bi E- K+v >!-rꍏѬthSC!^҈w.[QKR-5 SByRڿ^(s&oNLĤ]5υ"n1{*E򄷃>$~K7_W|J!\,%&uR~UFX4N &g=͊l2Af," ^MYd9ImHJ:Ko]ODxr- /aKO~;Yuqk0 ,_ݺ3OX1Pn#>oͽrb/!hC=n^hu5ȏ#VgӋ-AuC<Η7ERͮ3$*<^E|SaotB Cs.ܧ('?@B&Z&cjJt2e)rrx6/hjPJB!]3zSsDnn" j\1L)kJQei3AD+xtW!@4C-#ufUlDRU QVhyp/m3WZgw־#fjej ܧWŽz554ljkC~NN2 .:5YL +4(mI`JJy (B;CTJJ4D}kw唴QG&;=5Γ8PL 4Kp\v~B̝w $P,arXE}b!iXz``Ṛꁀ.m{c\/tFd- ^J"V~иɶ2DCsj4uRaRsĵ4(LP[ Ox[ y2jts ު,Lttn[3Ι:_޲c- 6*]]3`IݳErG9??'Lզ9MR H.nةI'bGUZZl *L(X:`^)^>pxKz:miS,^z>3XN,/9NYqXˡܽɞE|fGC(+ݗt"''"4oQWBZE@FL3%}iZ~ܽx |O)ÍltFty'AdI~?_/~? *2I/6Y ^QciDޒ }[B-7/6'L*˥r͇kb6psgR#>3sFn*èȯË5 PL:o^etcK"F&\a]X\TqFv5nߵY@t7ӒƦ3ӭH']UyPV'0$禶:2o6";`\akqq',([;a/ * e)i-CjXː @_9qx! <%/x0q3+n#[` gfo.ڥJE2O=5 \Ӻ߆b_, Q\ ;BG uԐECtׁIxF[CTl}h|WDڎ3w8]]b uu]eL)<?

什么是六维空间?有人说六维空间就像人面狮身像那样把本来不存在的事物结合的空间,是这样吗?还有五维和四维我好像有点混淆了,谁能解析给我知道?我要个具体解析.像:点.线.面.时间
什么是六维空间?
有人说六维空间就像人面狮身像那样把本来不存在的事物结
合的空间,是这样吗?还有五维和四维我好像有点混淆了,谁能解析给我知道?
我要个具体解析.像:点.线.面.时间

什么是六维空间?有人说六维空间就像人面狮身像那样把本来不存在的事物结合的空间,是这样吗?还有五维和四维我好像有点混淆了,谁能解析给我知道?我要个具体解析.像:点.线.面.时间
第六维空间 有科学家称,生活在三维空间和时间中的人类至今不知还有另外六个空间维度
威斯康星大学麦迪逊分校的一位物理学家寻找到了观察六维空间的灵感.
他提出的观察六维形状的方法被发表在本月的《物理评论快报》上.
除了四维时空,另有六个人类未知的空间维度
我们都知道,自己生活在三维空间之中,如果加上时间,那么是四维时空.可有科学家称,还有另外六个空间维度是人类至今不知的.
来自2007年2月2日的《物理评论快报》的一则消息称:威斯康星大学麦迪逊分校的一位物理学家从太空中寻找灵感,提出了这样的一个假设,在物理学“弦论”的基础下,人类的世界并不完整.除了三维空间和时间之外,还应该存在另外六个空间维度.这些“隐藏”的空间维度以极其微小的几何形状卷曲在我们宇宙的每一个点中.六维空间可以接纳任何可能的形状,而且都与其自身的世界相一致,具有其自身的物理学规律.
这无疑像一颗重磅炸弹落在物理学界.如果真的有六维空间存在,那么爱因斯坦的“相对论”就显示了其理论自身的不完善.
对于人类而言,我们习惯了三维空间的概念,如何能想象和接受六维空间?这神秘的六维几何体到底是怎么样的形状?难以捉摸的六维空间确实存在吗?
人类为什么看不见其它六维
中国科学院理论物理所朱传界教授告诉记者,“宇宙应该是十维的”是根据一种超弦理论的论证,科学家通过数学方程计算得出的结论.就目前而言,人们只了解一维时间、二维平面、三维空间以及爱因斯坦提及的“四维时空”概念.除此之外,“超弦理论”预测还应该存在另外六个人类未知的空间维度.
那为什么另外六个空间维度看不见呢?
朱教授以水管为例说,当人们站在这根水管的正面看时,水管就是一条直线,我们就只看到了它的前后,它就是一维的.当人们站在一个平面里,看这根水管,就能看到水管的上下左右,那么人们就看到了它就是二维的.当人们在一个立体的空间里看这个水管,它的前后、左右、上下都收纳在我们的眼中,那么它就是三维的.
可如果人们把这根水管放在两维的平面中,然后又把这个两维的平面放在三维空间中,那么会是什么样的呢?于是,科学家把水管想象成像一根头发丝那样细.科学家认为,六个“隐藏”的空间维度,以极其微小的几何形状,卷曲在我们宇宙的每一个点中.
这种观察六维形状的方法之所以被发表在《物理评论快报》上,是因为这种方法能证明通过实验数据来观察这些难以捉摸的维度形状特征是可行的.同时,六维空间的存在也是证实“超弦理论”的主要方面
一维 线(长)
二维 面(长*宽)
三维 体(长*宽*高)
四维 体*时间
其他都是物理假设,而且尺寸太小了,怎么讲,因为是人类,所以不能理解——进化思维的问题,正如只能看到二维的生物,不能想象3维一样.理论上,它们也存在,不过太小,坍缩了,比如一根很细的线,是一维,但放大了就看到宽了.
总之人类不能想象三维以上的维,时间是看不到的,其他又太小,进化使我们脑中没有其他维~

有科学家称,生活在三维空间和时间中的人类至今不知还有另外六个空间维度。威斯康星大学麦迪逊分校的一位物理学家寻找到了观察六维空间的灵感。他提出的观察六维形状的方法被发表在本月的《物理评论快报》上。
除了四维时空,另有六个人类未知的空间维度。
我们都知道,自己生活在三维空间之中,如果加上时间,那么是四维时空。可有科学家称,还有另外六个空间维度是人类至今不知的。
...

全部展开

有科学家称,生活在三维空间和时间中的人类至今不知还有另外六个空间维度。威斯康星大学麦迪逊分校的一位物理学家寻找到了观察六维空间的灵感。他提出的观察六维形状的方法被发表在本月的《物理评论快报》上。
除了四维时空,另有六个人类未知的空间维度。
我们都知道,自己生活在三维空间之中,如果加上时间,那么是四维时空。可有科学家称,还有另外六个空间维度是人类至今不知的。
来自2007年2月2日的《物理评论快报》的一则消息称:威斯康星大学麦迪逊分校的一位物理学家从太空中寻找灵感,提出了这样的一个假设,在物理学“弦论”的基础下,人类的世界并不完整。除了三维空间和时间之外,还应该存在另外六个空间维度。这些“隐藏”的空间维度以极其微小的几何形状卷曲在我们宇宙的每一个点中。六维空间可以接纳任何可能的形状,而且都与其自身的世界相一致,具有其自身的物理学规律。
这无疑像一颗重磅炸弹落在物理学界。如果真的有六维空间存在,那么爱因斯坦的“相对论”就显示了其理

收起

3维的空间容易理解,加上时间,就称之为4维,再多的维只是一个数学上的概念,不容易理解

四维空间是一个时空的概念。简单来说,任何具有四维的空间都可以被称为“四维空间”。不过,日常生活所提及的“四维空间”,大多数都是指爱因斯坦在他的《广义相对论》和《狭义相对论》中提及的“四维时空”概念。根据爱因斯坦的概念,我们的宇宙是由时间和空间构成。时空的关系,是在空间的架构上比普通三维空间的长、宽、高三条轴外又加了一条时间轴,而这条时间的轴是一条虚数值的轴。   根据爱因斯坦相对论所说:我们生活中...

全部展开

四维空间是一个时空的概念。简单来说,任何具有四维的空间都可以被称为“四维空间”。不过,日常生活所提及的“四维空间”,大多数都是指爱因斯坦在他的《广义相对论》和《狭义相对论》中提及的“四维时空”概念。根据爱因斯坦的概念,我们的宇宙是由时间和空间构成。时空的关系,是在空间的架构上比普通三维空间的长、宽、高三条轴外又加了一条时间轴,而这条时间的轴是一条虚数值的轴。   根据爱因斯坦相对论所说:我们生活中所面对的三维空间加上时间构成所谓四维空间。由于我们在地球上所感觉到的时间很慢,所以不会明显的感觉到四维空间的存在,但一旦登上宇宙飞船或到达宇宙之中,使本身所在参照系的速度开始变快或开始接近光速时,我们能对比的找到时间的变化。如果你在时速接近光速的飞船里航行,你的生命会比在地球上的人要长很多。这里有一种势场所在,物质的能量会随着速度的改变而改变。所以时间的变化及对比是以物质的速度为参照系的。这就是时间为什么是四维空间的要素之一。   在狭义相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。   在狭义相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
4维时空表示运动物体存在的物理空间,更详尽的表述如下,其对应相空间达到18维:   
前3维是位置,存在于空间中;   
第4维是速率,存在于时间中;   
第5 6维是速率指向,存在于(速度)时间方向中;   
第7 8维是状态指向,存在于自身形状对应的空间方向中;   
第9维是状态转角,存在于自身形状对应的滚动中;   
第10维是自旋速率,存在于滚动时间中;
第11 12维是自旋赤道轴指向,存在于滚动(速度)时间方向中;   
第13维是自旋赤道轴指向漂移速率,存在于滚动变化(加速率)时间方向中;   
第14 15维是自旋赤道轴指向漂移速度赤道平面映射方向,存在于滚动变化(加速度)时间方向中;   
第16维是加速率(或受力强度),   
第17 18维是加速度(或受力)方向。
维数概念
  通过把任意一个可以张出几何图形X的向量集合中的所有赘余向量移除,我们可以过的一组X的基底。选定的初始向量集合不同,获得的能张出X的基底也可能不同;但是,可以证明所有这些基底中都含有相同数量的向量。这个数量就叫做X的维数。换句话说,如果X最少需要 n 个向量来张出它,那么X就是n维的。   直观地,一个图形的维数可以认为是一个人要想达到这个图形中所有的点,需要运动的所有不同方向的数目。   例如,一个点是一个零维图形。我们不需要任何向量来张出它,因为如果我们从这个点出发,我们已经到达了它所有的位置。 ...........
一条直线是一个一维图形。从直线的某一个点上出发,我们需要一个指向这个直线的方向的向量来到达到直线上的其他点。只要一个向量就足够了,因为通过不同程度的伸缩它我们可以到达直线上的任意其他点。   一个平面是一个二维图形。给定平面上的一个起始点,我们至少需要两个互不平行的向量来张出这个平面。如果只有一个向量,我们只能到达某一条直线上的所有点;所以我们需要有另一个与它不平行的向量来往这条直线的“两边”走,从而到达平面上的其他点。只要两个方向就足够了,因为我们可以顺着(或逆着)前一个向量走不同的距离,再往两边走不同的距离来到达平面上的任意点。也可以把平面理解成许多平行线的“堆积”;要想在二维平面上从一点运动到另一点,我们需要首先沿着线平行线运动,再穿过这些平行线向另一个方向运动。   在我们的眼中,空间是三维的。要达到空间中的某一点,我们不仅要向前向后、向两边走,还需要上下移动。换句话说,需要第三个向量才能到达空间中的所有点。同样,也可以把空间理解成许多平行平面的堆积:要想在空间中从一点运动到另一点,我们可以先沿着一个方向前后走,再向两边走,最后上下走。   四维空间则是一个需要四个不同方向才能到达其中所有点的空间。这种空间可以认为是许多平行的三维空间的堆积。要理解这个概念,想象一下把一张张纸并列叠起来的过程。如果人不把它们一个个堆叠起来,这些纸张不会延伸进三维空间。以同样的方式,要想进入四维空间,就必须向一个新的方向运动,这个方向必须是在三维空间以外的。要达到四维空间中的每一个点,一个人不仅需要向前后、左右、上下移动,还要沿着一对新的方向运动,即上文提到的安娜/卡塔,或者叫维因/维奥等等。
维数类比
一个超正方体的展开图。
  要理解四维空间的本性,我们可以利用一种称为“维数类比”(dimensional analogy) 的方法。维数类比是指通过研究 n - 1 维与 n 维之间的关系,来推断 n 维与 n + 1 维之间会有什么样的关系。   埃德温·阿伯特·阿伯特在他的书扁平的世界 (Flatland)中运用维数类比,讲述了在一个扁平得就像一张纸的二维世界中生活的一个正方形的故事。在这个正方形的眼中,生活在三维世界中的人们拥有近乎神的力量,因为他们能在不打破(二维的)保险箱的情况下从其中把东西(通过移入移出三维空间的方法)取出,能看到所有在二维世界看来是被挡在墙后面的东西,甚至能站在离二维世界几英寸的地方来保持“隐形”。   
通过应用维数类比,人们可以推断,四维空间中的人在我们三维的视角看来应该有类似的神奇能力。鲁迪·拉克在他的小说空间世界 (Spaceland)中展示了这一点。小说的主人公就遇到了具有神奇能力的四维人。

收起