一个瑞士的几何学家 叫ludwig schlfli 他是一个个用几何学解开四维世界奥秘的人.我想知道他的详细资
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 11:23:23
- ))Uhtف&J6Mvkd+P
q\q)чr/v.`,TT[v/w,$;Kr )E1%لJf1vS?'&C0H3bޠI~!Ԣ\3
28Oi:Et:$)UELX{""ժtznP&QZDkcgw\⸞hm~ 3[h`BFw)=S6'.|FA>fmVM. J~qf9eAى1!EL|1ݑ[8%.Kˣ-BAhW*1Pj-4u܃ra@{qaOGd_O\sNA|8%.׆i*j~Tö}B,5&YMsIq;K0r.,C{8a@{) u\4$$4OHRLy2Xt2DcKi`NԡŮz2RZf+2f:N`U,'Adm35~|yFܠ1wٜ]r٠2e[Wȷn2og<2,E9nl'&u2N$@q:QiA
27J8ƖkgK?BIc\cD-Tײ1Fޮ vIerq|a^1'D TiƸ zjAq̈G 'L8i9tћ]ɘNِ$]#gR%t%&>%_qv$$1=DU*
+f..qf8'3x@L\y0_8:a!z<"ź|yMpi}(DQS^O11EcT^xx9Nn_Ƭ;
一个瑞士的几何学家 叫ludwig schlfli 他是一个个用几何学解开四维世界奥秘的人.我想知道他的详细资
一个瑞士的几何学家 叫ludwig schlfli 他是一个个用几何学解开四维世界奥秘的人.我想知道他的详细资
一个瑞士的几何学家 叫ludwig schlfli 他是一个个用几何学解开四维世界奥秘的人.我想知道他的详细资
出生日期:15 Jan 1814
出生地Grasswil,Bern,Switzerland
死亡日期20 March 1895
死亡地点Bern,Switzerland
路德维希Schläfli先研究神学,然后转向科学.他工作了10年,作为一为中学教师.在此期间,他在空闲的时候从事高等数学研究.
Schläfli是一个专家语言学家,讲多国语言,包括梵文和Rigveda文(不知道什么文- -) .施泰纳在1843年,雅可比和狄利克雷前往罗马,并让Schläfli作为一个翻译.他与这些数学家进行了很多的讨论.
Schläfli的工作是针对几何,算术和功能的理论.他的整体代表性的Bessel函数和伽玛功能.他还研究椭圆模块化功能.
Schläfli作出了重要贡献非欧(椭圆)几何时,他提议,球形三维空间可以被看作是表面的hypersphere在欧几里德四维空间.
1853年Schläfli在伯尔尼成为数学教授.他的Theory of continuous manifolds ,发表于1901年,是他去世后,也只有到那时他的重要性得到充分的赞赏.
他得到了由柏林科学院颁发的施泰纳奖 ,他发现了27线和36个双六的表面一般立方米.(
27 lines and the 36 double six on the general cubic surface.)
Schläfli在天体力学也取得了也取得了重大的贡献
以上是直接翻译的修改 原文是
Ludwig Schläfli first studied theology,then turned to science.He worked for ten years as a school teacher in Thun.During this period he studied advanced mathematics in his spare time.
Schläfli was an expert linguist speaking many languages including Sanskrit and Rigveda.In 1843 Steiner ,Jacobi and Dirichlet travelled to Rome and took Schläfli as an interpreter.He gained greatly from discussions with these mathematicians.
Schläfli's work was in geometry,arithmetic and function theory.He gave the integral representation of the Bessel function and of the gamma function .He also worked on elliptic modular functions.
Schläfli made an important contribution to non- Euclidean (elliptic) geometry when he proposed that spherical three-dimensional space could be regarded as the surface of a hypersphere in Euclidean four-dimensional space.
In 1853 Schläfli became professor of mathematics at Bern.His major work Theory of continuous manifolds was published in 1901 after his death and only then did his importance become fully appreciated.
He received the Steiner Prize from the Berlin Academy for his discovery of the 27 lines and the 36 double six on the general cubic surface.
Schläfli also made significant contributions to celestial mechanics.
PS:关于这个人 中文资料不多 不过英文的资料很多 能查的到 你自己去看
参考资料的链接是它的某讲稿