六年级上学期数学应用题和答案60道不要太难

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:39:26
六年级上学期数学应用题和答案60道不要太难
x[R#I| TYU=GTwXE Z%B D(ĮI<"T0pDfVʹuQ ׯ_˹^?^Ν=ԫxZu5rӱ֠]Npi? ADꐋ̼57c;3l]6M T+UB"!MJAwP7y{nsk}p96עrV^"8ZTi~hJWϨrQ#u'ՏZ9&Rr>Rod9(fЩ ǃydi>{1̌14d遞۩8=j6 )ք)/+i&xefjt_ⱖVٸIeld<ϼAA]low"bj>vT4Syb2vE#߃vy?܇GN8[k/@mY1jtCt@>!-kEakSGe+ZK5IVzm׌sg%t cF^ҟsw@3{t&}s}YICOH6 vw;m6/-9SNUkWֽʳƒ-$Gn7^{ NTFVLǿa^~J%^jJ8vRkKKBZ +?מ'֖}r^vF8 H(k۱ l 7&_" {(q:øٌ:EHyZCYwĨ(479Je’>`O_w-l0@С1`4jV/c&ro^As};B;VXˆV, ;'۶iuELEeod@1 `hd",{bEa &\&Q$él$~ X&'liK .? UA+iFٯŠ,۔IPb ^v"k֣y70b ƃ:[c15[_ic ^fr`̼RsRcL ;9zӂ/ј&$!=}jtO R' $;4NCZT+]#;{߻W44kZ02@)ԌAc=X9)O6(Q7xՏDC6M̵g:*9@./d(I B%,h1fbՓ1Xm>ADEaU9XTV -9"چ+Z-wP{zݺC2P*]L*b!2oVZylϣJc?^RTOL`'Sf }.ge w+: eD 6 ~D9^op7/ *==;+cx<)& ЬQYzToЧ, ^H/1J 30pbx'k7{a5"4`Jc֓B X`D;TC#KTZ f."J$ 8r(x`cO/|Yy&JDX4!p &dC~i]އ>C7rP'sU>YIkzRxxcB('c;vX-wM'~EX.l,}OpWW޹/(|.!ii, Ňq {?ä M\kĪln&0-1yaDR 4uN'uLh">ѥfθM$|Au8H;l lF׍Jӿ"`覯a WcȖ0]̼Qz!r2ĚƢ"k5X,XM޹Pyg>{.d2z%#{!B4y_yb$> &Ƭ:ƹ-}'y5qCf%ȅ) Um^"S7lZ[ݑ1B'cdH阕Et#I\A1;0L30!w!{fanH@κzvy\ ^6uCEҤ}Ӄ₣!yp^C;;h,VZzo@ t 3IۥolY}bi*yi|뛐r5bkk=Ȏ4gHj[*…Ơ]'~Amď/!coi}){탁˷dh'&zcMqjTeAĽ>R\%od.2L ϴHp]4˜#>7bpN(|1q ́w#t6ΠJ`~[+<_Q=XdʻeH6p" #C$x0łȳ s5ssp8>ъ&&w-@jh0)2[k1y(ܣ|TnW Pa#qIc^7/~f5TűO? L0{QEe#:< |17il)<4T_ y9&We\>־I7 K)Ce{u[~UݵԘwPqMA{pEv)U^cc،l>_}f*3vQANjR(w_]pNk`8?IW)i$ 9\ͻ>t/I usݼl)nJ˯*Sg^MۻVZ?vy[oFtެ&ׅ!u梤7pDZj ȃ@e /S&r.RJnJW=`z+^h/)G^ouQ%pYV<LU|KWX|6&Q'K'],o7D|hr t)M7}Sli׷c9ҤN tg snk0R ;11_=d?e _}ƪ]tS٠͙De:`N9)>Y溽s=dQF{V ~sPݒg mdarb&Ăyׄ,<oA d4L^i@=kɼF<'0h),X"МGTg]"6O/q7@u6捛(jfxZ^ei&*Ϫ=V6w`˯>B2ĠV]X+t=)و<&Sl57욉tjbd29WSpA=(ʫ^>W.O?LǏ?Agu{d=9x2+PL<wMIif~H2.T6r#}@ gjr*&$ґ%ȟ[

六年级上学期数学应用题和答案60道不要太难
六年级上学期数学应用题和答案60道不要太难

六年级上学期数学应用题和答案60道不要太难
小学六年级应用题、易错题、难题集锦
1.小明看一本书,原计划每天看35页,32天看完.实际每天比计划多看5页,实际用多少天看完?
2.修一条路,原计划每天修0.4千米,70天可以修完.实际每天修的米数是计划的1.25倍.实际用多少天完成?
3.绿化队植树,计划8天完成任务.实际每天植树240棵,7天就完成了全部的植树任务.实际比计划每天多植树多少棵?
4.给某村送红糖和白糖.每到一户送去2袋红糖和5袋白糖,送到最后一户时,红糖正好送完,还剩下10袋白糖.已知带去的白糖的袋数是红糖袋数的3倍,那么带去的红糖、白糖各多少袋?
5.服装厂要加工一批服装.第一车间和第二车间同时加工60天正好完成.已知第一车间加工的服装占服装总数的45%,第二车间每天加工132件.第一车间每天加工多少件?
6.洗衣机厂计划生产一批洗衣机.结果9天恰好完成了计划的37.5%.照这样计算,完成计划还要多少天?
7.有一堆煤可以烧120天.由于改进烧煤技术,每天节约用煤0.25吨,结果这堆煤烧了150天.这堆煤共有多少吨?
8.把一袋花生分给小明,小强和小刚,小明分得总数的五分之一多6颗,小强分得剩下的五分之一多9颗,最后剩下的给了小刚,结果三人得到的花生一样多,这袋花生一共有多少颗?
9.甲乙两个车间加工一批同样的零件.如果甲车间先加工35个,然后乙先加工1天,然后乙车间再开始加工,经过5天后两车间加工的零件数相等.那么乙车间一天加工多少个零件?
10.正方形如何5等分?
11.现有10斤油在一10斤的桶内,有1个7斤和1个3斤的桶可用于测量.请将这10斤油平均分为两个5斤,装在10斤和7斤的桶内.
12.有100千克青草,含水量为66%,晾晒后含水量降到15%.这些青草晾晒后重多少千克?
13.将一个正方形的一边减少1/5,另一边增加4米,得到一个长方形.这个长方形与原来正方形面积相等.那么正方形面积有多少平方米?
14.某车间加工甲、乙两种零件.已加工好的零件中甲种零件占30%,后来又加工好了24个乙种零件,这时甲种零件占25%.那么现在已加工好两种零件共多少个?
15.甲、乙、丙三人共生产零件1760个.如果甲少生产2/9,乙多生产80个,那么甲、乙、丙三人生产零件的个数相等.甲、乙、丙三人各生产了多少个?
16.小明今年的年龄是他爸爸年龄的1/6,15年后他的年龄是他爸爸年龄的4/9.小明和他爸爸今年各多少岁?
17.某校有学生314人,其中男生人数的2/3比女生人数的4/5少40人.这个学校男生、女生各多少人?
18.甲、乙两班人数相等,各有一些同学参加了数学小组.甲班参加数学小组的人数恰好是乙班没参加数学小组人数的1/3;乙班参加数学小组的人数恰好是甲班没参加数学小组人数的1/4.那么甲班没参加数学小组的人数是乙班没参加数学小组人数的几分之几?
19.容器里放着某种浓度的酒精溶液若干升,加1升水后纯酒精含量为25%;再加1升纯酒精,容器里纯酒精含量为40%.那么原来容器里的酒精溶液共几升?浓度为百分之几?
20.甲、乙、丙三人合抄一份稿件,1小时可以完成.如果甲、乙二人合抄,要80分钟完成;如果乙、丙二人合抄,要100分钟完成.如果这份稿件由乙一人独抄,要几小时完成?
21.一件工程,甲独做,20天可以完成;乙独做,30天可以完成.现在两人合做,中间甲休息了3天,乙休息了若干天,结果经过16天才完成.问乙休息了几天?
22.注满一池水,只打开甲管,要8小时;只打开乙管,要12小时;只打开丙管,要15小时.今开始只打开甲、乙两管,中途关掉甲、乙两管,然后打开丙管,前后共用了10小时才注满一池水.那么打开丙管注水几小时?
23.某工程队承建一项工程,要用12天完成.如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程.如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?
24.甲、乙两队合干一项工程,甲队先独干了6天后,乙队参加和甲队一起干,又过了4天完成了全工程的1/3.又过了10天正好完成了全工程的3/4.因甲队另有任务调出,乙队继续工作,直到完成全工程.从开始到完工用了多少天?
25.甲、乙、丙三人进行自行车比赛,结果甲比乙早24分钟、乙比丙早6分钟到达终点.又知道甲速度比乙速度每小时快5千米,乙速度比丙速度每小时快1千米.甲、乙、丙三人比赛的路程有多少千米?
26.平日A、B两车分别从甲城、乙城两地同时出发,相向而行,6小时相遇.某日A车途中发生故障,修理占去了2.5小时,结果经过7.5小时两车才相遇.那么这一天A车从甲城出发到乙城用了多少小时?
27.某市104路电车起点站和终点站都按一定的间隔时间发一辆电车,并且匀速行驶.张华骑车沿104路电车线以均匀速度行驶,每隔12分钟有一辆电车从后面超过他,每隔4分钟有辆电车迎面开来.那么104路电车起点站和终点站每隔多少分钟发一辆车?
28.甲、乙二人步行的速度比为11∶7.二人分别从A、B两地相向而行,2小时相遇.如果二人同向而行,几小时后甲追上乙?
29.有45名学生要到离学校30千米的郊外.学校只有一辆汽车能乘坐15人,汽车的速度是每小时60千米.学生步行的速度是每小时4千米.为使他们尽早到达劳动地点,他们最少要用几小时才能全部到达?
30.甲、乙两班学生同时从学校出发去少年宫.甲班步行的速度是每小时5千米,乙班步行的速度是每小时6千米.学校有一辆汽车恰好可以坐一个班的学生,汽车每小时行30千米.为了使两班学生尽早到达少年宫,甲、乙两班步行路程比应该是几比几?
31.一辆汽车从甲地开往乙地.如果把车速度提高20%,那么可以比原定时间提早1小时到达.如果以原速行驶120千米后,再将速度提高25%,那么可以比原定时间提早40分钟到达.甲、乙两地之间的路程有多少千米?
32.从甲市到乙市有一条公路,它分成三段,其中第一段长是第三段长的2倍.在第一段路上,汽车的速度都是每小时40千米;在第二段路上,汽车的速度都是每小时90千米;在第三段路上,汽车的速度都是每小时50千米.现有两辆汽车同时从甲、乙两市出发相向而行,1小时20分后在第二段路的1/3(从甲市到乙市方向的1/3)处相遇.那么甲、乙两市相距多少千米?
33.甲、乙两车同时从A地出发到B地.甲车按原定速度行了全程的2/3后,车速提高了1倍,结果比原计划时间提前2小时到达B地;乙车按每小时30千米的原定速度行了全程的1/4后,车速提高了1倍,结果两车同时到达B地.那么甲原定每小时行多少千米?
34.甲、乙两城之间有长途汽车以固定速度行驶.如果车速比原定速度每小时快6千米,那么就可以早到20分钟.如果车速比原定速度每小时慢5千米,那么就要迟到24分钟.问甲、乙两城间的路程是多少千米?
35.在城市中公交车的发车时间是一定的.小明放学后走在回家的路上,他发现每隔六分钟从他的后面开来一辆公交车,每隔两分钟从他的前面开来一辆公交车,他想车到底是几分钟发一辆车,你能帮他计算一下吗?
36.甲乙两地相距240千米,汽车从甲地开往乙地速度为36千米/时,摩托车从乙地开往甲地速度为24千米/时,摩托车从乙地开出2.5小时后,汽车也由甲地开出,问汽车开出后几小时遇到摩托车?
37.为满足用水量增长的要求,昆明市最近新建甲乙丙三个水厂,这三个水厂日供水量共计11.8万立方米,其中乙水厂的日供应量是甲水厂的3倍,丙水厂的日供应量比甲水厂日供水量的一半还多1万立方米,求这三个水厂的日供水量分别是多少立方米?
38.甲、乙是某服务公司的股东,甲占股份的60%,乙占股份的40%.后来他们决定收丙入伙,于是丙给了甲、乙18万元,使他们的股份都降到35%,而丙占股份的30%,甲、乙各应收回多少元?
39.一次考试共有5道试题.做对1、2、3、4、5题分别占参加考试人数的81%、91%、85%、79%、74%,如果做对三道或三道以上为合格那么这场考试的合格率至少是多少?
40.用0-9排列三位数
1)如果每个数只能用一次,那么有多少种可能?
2)如果每个数可以用多次,那么有多少种可能?
41.现在是4时5分,再过多少分钟,时针与分针第一次重合?
42.一次足球比赛1轮(每队场赛11场)胜一场得2分,平一场得1分.负一场得0分.某队负场数是所胜场数M 2/1 .共得14分.问该队工平几场?
43.一份试卷共25道选择题.答对1题得4分,答错或不答扣1分.某学生得了90分.做对了几题?现在500名学生参加考试.有得83分的吗?为什么?
44.某市居民生活用电基本价格为每千瓦时0.40元,若每月用电超过a千瓦时,超出部分按基本电价的70%收费.(1)某户五月份用电84千瓦时,共交费30.72元,求a.(2)若该户六月份的电费平均为每千瓦时0.36元,求六月份共用电多少千瓦时,应交电费多少元?
45.张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存2年期的,年利率是2.43%;一种是先存1年期的,年利率是2.25%,第1年期到时再把本金和税后利息取出来合在一起,再存入1年.选择哪种办法得到的税后利息多一些?
46.三个5,一个1,加减乘除,得24
47.有一五边形,给每个顶点任意涂上黄,红,绿三种颜色的一个,要求相临的顶点颜色不同,问有几中涂法?
48.有一个两层的书架,上面一层书的数量是下面一层的2.5倍,从上面一层拿下60本书两层书的数量刚好.问两层书个有多少?
49.甲、乙二人分别后,沿着铁轨反向而行,此时,一列火车匀速的向甲迎面驶来,列车在甲身旁开过,用了15秒;然后在乙身旁开过,用了17秒.已知两人的步行速度都是3.6千米/时,这列火车有多长?
50.李白无事街上走,提着酒壶去打酒.遇店加一倍,见花喝一斗(斗,古代盛酒的器皿).遇店三次花三次,喝完壶中酒.问壶中原有多少酒?
51.一个蓄水池共有AB两个进水管和一个排水管C,单独开A管,6小时可将空池注满,单独开B关.10小时可将空池注满水,单独开C关,9小时可将满池水排完,现在水池中没有水,若先将AB两管同时开2.5小时,然后再开C管,问打开C管后几小时可将水池注满水?
52.一个3位数的个位数字是4,如果把4换到最左边,所得的数比原来的3倍多98,原来的数是多少?
53.若abcd*e=dcba,则abcd各等于多少?
abcd*4=dcba
abcd*9=dcba
54.甲乙两人分别从A,B两地同时出发相向而行,出发时他们的速度是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A地还有14千米,那么A.B两地间的距离是多少千米?
55.把1/28表示为两个不同的分数单位之和,那么共有多少中不同的表示方法(仅求和次序不同视为一种)?
56.下面的表中已填入了9个质数,将同一行或同一列的3个数加上相同的自然数称为一次排列,问:你能通过若干次排列使得表中9个数都变为相同的数吗?为什么?
235
13117←这个是表格数字原来排列
171923
57.任意3个整数,A.B.C两两相乘,所得积的和为奇数,则A.B.C中奇数个数至少有多少?
58.有甲乙两项工作,张单独完成甲工作需要10天,单独完成乙工作要15天,李单独完成甲工作要8天,单独完成乙工作要20天,如果每项工作都可以由两人合作,那么这两项工作都完成至少需要多少天?
59.用1分,2分和5分的硬币凑成一元钱,共有多少中不同的凑法?
60.求三个连续自然数,使其中最小的数是15的倍数,最大的数是19的倍数,另一个数是17的倍数,则这个连续三个数的和最小是多少?
多给些分啊!

小明和小红一起去上学,路程共1000千米,小红走了5分之3,小明走了5分之2,提问小明小红各走了多少千。解答 1000×3/5 1000×2/5