设函数y=arcSin(x^2 -1/4)的最大值为A,最小值为B,求Cos[pi-(A+B)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 04:38:08
设函数y=arcSin(x^2 -1/4)的最大值为A,最小值为B,求Cos[pi-(A+B)]
x){nϦnM,JӨ3R57|>ٜK?md.GoC?lcs~qtAfMR>5/AzZO|tg3قuu6<ٽiz Rұ SHECU/Bn)(&Cx t5d0hTe_\g ܜ

设函数y=arcSin(x^2 -1/4)的最大值为A,最小值为B,求Cos[pi-(A+B)]
设函数y=arcSin(x^2 -1/4)的最大值为A,最小值为B,求Cos[pi-(A+B)]

设函数y=arcSin(x^2 -1/4)的最大值为A,最小值为B,求Cos[pi-(A+B)]
x^2-1/4的取值范围是>=-1/4,所以A可以取到pi/2,而B只能取到arcsin(-1/4)
所以Cos[pi-(A+B)]=cos[pi-pi/2-arcsin(-1/4)]=cos[pi/2-arcsin(-1/4)]=sin[arcsin(-1/4)]=-1/4