o是平面上一点,abc是平面上不共线的三个点,op=oa向量+λ(ab向量+ac向量),则p的轨轨迹一定通过三角形abc的什么心

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:18:57
o是平面上一点,abc是平面上不共线的三个点,op=oa向量+λ(ab向量+ac向量),则p的轨轨迹一定通过三角形abc的什么心
x)6cӝ_]dGד ϛv$&%>m|Z|cHQ~m~ _kۭe'&C:O;fػtݬ ^ob{Ύm&M$8Lfp^ Q2 znDŎ@[ؕ1?1 hQb Qm_\gjE=

o是平面上一点,abc是平面上不共线的三个点,op=oa向量+λ(ab向量+ac向量),则p的轨轨迹一定通过三角形abc的什么心
o是平面上一点,abc是平面上不共线的三个点,op=oa向量+λ(ab向量+ac向量),则p的轨
轨迹一定通过三角形abc的什么心

o是平面上一点,abc是平面上不共线的三个点,op=oa向量+λ(ab向量+ac向量),则p的轨轨迹一定通过三角形abc的什么心
重心……设bc的中点为d,向量ab+ac=2ad向量……

已知O,A,B是平面上不共线的三点,若点C满足 已知O是平面上一丁点,ABC是平面上不共线的三点,动点P满足向量OP=(向量OB+向量OC)/2+λ(向量AB/(|向量AB|cosB)+向量AC/(|向量AC|cosC),已知O是平面上一丁点,ABC是平面上不共线的三点,动点P满 o是平面上一点,abc是平面上不共线的三个点,op=oa向量+λ(ab向量+ac向量),则p的轨轨迹一定通过三角形abc的什么心 O是平面上一定点,A,B,C是平面上不共线三点,求p的见相册同名图片 若O为平面内一点,A、B、C是平面上不共线三点,动点P满足向量OP=向量OA+λ(向量AB+1/2向量BC)λ∈(0,+无穷),则P的轨迹一定通过△ABC的().A.重心 B.垂心 C.外心 D.内心 O是平面上一点,A B C是平面上不共线的三点,平面内的的动点P满足向量OP=向量OA+X(向量AB+向量AC),若X=1/2向量PA*(向量PB+向量PC)的值为 已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/sinc+AC/sinb),则P的轨迹一定通过△ABC的 O是平面上一定点,ABC是平面上不共线的三个点,动点P满足 OP=OA+λ( AB|AC| + AC|AC| ),则P的轨迹一定通过 o是平面上的一点,A B C是平面上的不共线的三个点,动点P满足OP向量=OA向量+λ(AB向量/AB向量的模 + AC向o是平面上的一点,A B C是平面上的不共线的三个点,动点P满足OP向量=OA向量+λ(AB向量/AB 已知平面外一点p和平面内不共线的三点ABC,EFG分别在PA,PB,PC上,若延长EF,EG,FG,分别与平面交于HIJ三点,则HIJ三点关系是()A,钝角三角形 B,锐角三角形 C,直角三角形 D,成一直线 O、A、B是在平面上不共线的三点,若满足向量AC=CB 则= 答案我知道 不知道过程 怎么理解的O、A、B是在平面上不共线的三点,若点C满足向量AC=CB 则向量OC= 答案我知道 不知道过程 怎么理解的A OA O为平面上的一个定点,A、B、C是该平面上不共线的三点,若(OB-OC)•(OB+OC-2OA)=0,则△ABC是A.以AB为底边的等腰三角形 B.以BC为底边的等腰三角形C.以AB为斜边的直角三角形D.以BC为斜边的直角三 1.o是平面上一定点,A B C 是平面上不共线的三个点 动点P满足 向量OP=向量OA+λ(向量AB+向量AC) λ≥0 则P一定通过三角形ABC的 重心 对么 2.o是平面上一定点,A B C 是平面上不共线的三个点 λ≥0 设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB+向量AC/ 向量AC的模*cosC),t属于(0,+无穷),则动点P的轨迹一定过三角形ABC的什么心? O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC ),O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC λ 设AB是圆O的的直径.C是圆周上的任意一点,PA垂直平面ABC(P为圆O所在平面外一点)求证:平面PAC垂直平面PB设AB是圆O的的直径.C是圆周上的任意一点,PA垂直平面ABC,(P为圆O所在平面外一点)求证: O是平面内一定点,ABC是平面上不共线的三点,动点P满足OP=OA+λ(AB+AC),λ属于零到正无穷,则P点的轨迹定过三角形ABC的 外心?垂心?内心?还是重心?OP,OA,AB,AC都是向量 平面向量的基本定理及坐标表示一、向量e1、e2是平面内一组基底,若ke1+he2恒成立,则k= h= O是平面上一定点,A、B、C是平面上不共线的三点,动点满足向量OP=向量OA+K(向量AB/向量AB的模+向量AC/向