an是 等差数列,sn是前n项和,bn等比数列a1= b1=2,a4+b4=27,s4-b4=10 求2个通项Tn=anb1+an-1b2+...+a1bn,证明Tn+12=-2an+10bn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 06:12:47
an是 等差数列,sn是前n项和,bn等比数列a1= b1=2,a4+b4=27,s4-b4=10 求2个通项Tn=anb1+an-1b2+...+a1bn,证明Tn+12=-2an+10bn
xSn@=YouD+ziW>Zk%@BRည@qm@o┞ ̮p@bϼy3cϛM__.퇳B>{~gCxa+ sҨFY 0d??T/ vJ˧Ke;?qznbyzGq(H.AATsB$JT8x:*SLq]]L09Yit=&r5jG`:*gkl åiI:~U4!r 6GWQVΟ̭_-/@g(3pH L[L~]Y+tşF]Qo9&D ךiO _(Zh*5YDSC2TׁUb e1%P nO0zA

an是 等差数列,sn是前n项和,bn等比数列a1= b1=2,a4+b4=27,s4-b4=10 求2个通项Tn=anb1+an-1b2+...+a1bn,证明Tn+12=-2an+10bn
an是 等差数列,sn是前n项和,bn等比数列a1= b1=2,a4+b4=27,s4-b4=10 求2个通项
Tn=anb1+an-1b2+...+a1bn,证明Tn+12=-2an+10bn

an是 等差数列,sn是前n项和,bn等比数列a1= b1=2,a4+b4=27,s4-b4=10 求2个通项Tn=anb1+an-1b2+...+a1bn,证明Tn+12=-2an+10bn
a(n)=2+(n-1)d.
s(n)=2n+n(n-1)d/2.
b(n)=2q^(n-1).
10=s(4)-b(4)=8+6d-2q^3,
27=a(4)+b(4)=2+3d+2q^3,
37=10+9d,d=3.
a(n)=2+3(n-1)=3n-1.
10=8+6d-2q^3=26-2q^3,
q^3=8,q=2.
b(n)=2*2^(n-1)=2^n
t(n)=a(n)b(1)+a(n-1)b(2)+...+a(1)b(n)=(3n-1)*2 + (3n-4)*2^2 + (3n-7)*2^3 + ...+8*2^(n-2)+5*2^(n-1) + 2*2^n,
2t(n)=(3n-1)*2^2 + (3n-4)*2^3 + (3n-7)*2^4 + ...+ 8*2^(n-1) + 5*2^n + 2*2^(n+1),
t(n)=2t(n)-t(n)=-(3n-1)*2 + 3[2^2 + 2^3 + ...+ 2^n] + 2^(n+2)
=2^(n+2) - 2(3n-1) + 12[1+2+...+2^(n-2)]
=2^(n+2)-2(3n-1)+12[2^(n-1)-1]
=2*2^(n+1)-6n+2 +3*2^(n+1)-12
=5*2^(n+1) - 6n - 10
-2a(n)+10b(n)=-2(3n-1)+10*2^n=5*2^(n+1) - 6n + 2 = t(n) + 12

已知{an}是等差数列,其前n项为sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,s4-b4=10,求数列{an}{bn} a4+b4=2+3d+3q^3=27

a4+b4=27,s4-b4=10
s(4)+a(4)=37
4(a(1)+a(4))/2+a(4)=37
5a(1)+9d=37
a(1)=2
d=3
a(n)=a(1)+d(n-1)=2+3(n-1)=3n-1
b(4)=27-a(1)-3d=27-2-9=16=b(1)q^(4-1)=2*q^3
q=2
b(n)=b(1)q^(n-1)=2*2^(n-1)=2^n

已知数列{an}的前n项和sn满足sn=an^2+bn,求证{an}是等差数列 设{an}是等差数列,an=2n-1,{bn}是等比数列,bn=2^(n-1)求{an/bn}前n项和Sn (1)已知数列an的前n项和为sn满足sn=an²+bn,求证an是等差数列(2)已知等差数列an的前n项和为sn,求证数列sn/n也成等差数列 已知Sn为等差数列An的前n项和,Bn=Sn/n(n属于正整数),求证:数列Bn是等差数列 证明:数列{an}为等差数列的充要条件是{an}前n项和Sn=An^2+Bn 已知数列{bn}前n项和为Sn,且2(Sn-n)=n*bn,求证{bn}是等差数列. a1=1.an+1=2an+2^n.bn=an/2^n-1.证明bn是等差数列、求数列的前n项和sn? 等差数列一道题{an}{bn}是等差数列前n项的和分别是Sn和Tn sn/tn =7n+2/n+3 求a5/b5 an是等差数列,bn满足bn=an*a(n+1)*a(n+2),bn的前n项和是Sn,若a1=d,用数学归纳法证明Sn=bn*a(n+3)/4d. 已知数列an的前n项和为sn,且sn=n^2-16n n∈ N*1.求证an是等差数列2.记bn=绝对值an,求数列bn的前n项和Tn 一道数学等差数列的题目等差数列an的前n项和Sn bn的前n项和Tn Sn比Tn=2n/(3n+1) 那么an与bn的比值是 已知数列{an}是等差数列 a4=7 S3=9 数列前n项和为Sn 且Sn=2bn-2 求{an}{bn}的通项公式求 数列{an bn}的前n项Tn 数列{an}是等差数列,a1=-2,a3=2 求若bn=2的an次方,求数列{an*bn}的前n项和Sn. 高一数学数列的题目(在线等答案)设等差数列{an}的前n项和为Sn,且a1=2,a3=6,设数列{1/Sn}的前n项和是Tn,求T2013的值(已求出 an=2n,Sn=n^2+n)设数列{an}的前n项和为Sn,an与Sn满足an+Sn=2,令bn=Sn+mS(n+1), 设Sn为等差数列{An}的前n项和,求证:{Sn/n}是等差数列 {an},{bn}是两个等差数列,其前n项和分别为Sn和Tn,且Sn/Tn=(7n+2)/(n+3),则a8/b8= 数列an的前n项和为Sn,a1=1/4且Sn=Sn-1+an-1+1/2(n-1为下标)数列bn满足b1=-119/4,3bn-bn-1=n 求an通项公式,证:数列bn-an是等比数列,bn前n项和Tn的最小值数列an不一定是等差数列~~ 已知数列{an}的前n项和Sn=an^2+bn+c(n∈N*),写出{an}是等差数列的充要条件加以证明