一道关于高中均值不等式 均值不等式比较:2/(1/a+1/b)+(根号【(a²+b²)/2】) 与(根号ab)+(a+b)/2的大小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:29:20
xRN0%&fK]4:.qa4@d΄xhqē}ߪy
ƬtK.zxhϺ5C"#|9S.*PA <0ik@ԨNnt25n%`S8녍2i7GEa%yMg"@ {2q+њn410:B\S&Ѹb>&v3ά٦Jv=!2HJPTMJl#+ՅiErPMd=|roXe"Y)
[?dOEkVάݫ
一道关于高中均值不等式 均值不等式比较:2/(1/a+1/b)+(根号【(a²+b²)/2】) 与(根号ab)+(a+b)/2的大小
一道关于高中均值不等式
均值不等式比较:2/(1/a+1/b)+(根号【(a²+b²)/2】) 与(根号ab)+(a+b)/2的大小
一道关于高中均值不等式 均值不等式比较:2/(1/a+1/b)+(根号【(a²+b²)/2】) 与(根号ab)+(a+b)/2的大小
对a,b > 0,可证明2/(1/a+1/b)+√((a²+b²)/2) ≥ √(ab)+(a+b)/2.
这等价于√((a²+b²)/2)-√(ab) ≥ (a+b)/2-2/(1/a+1/b).
左端 = (a-b)²/(2(√((a²+b²)/2)+√(ab))),而右端 = (a+b)/2-2ab/(a+b) = (a-b)²/(2(a+b)).
因此不等式可进一步化为a+b ≥ √((a²+b²)/2)+√(ab).
设x = √((a²+b²)/2),y = √(ab),
则有a+b = √(a+b)² = √(2x²+2y²) ≥ √(x+y)² = x+y = √((a²+b²)/2)+√(ab).
于是原不等式成立.