设F1,F2分别是椭圆E:X^2/a^2+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B,且|AF2|,|AB|,BF2|成等差设F1,F2分别是椭圆E:X^2/a+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B两点,且|AF2|,|AB|,BF2|成等差数列1.求E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 03:43:15
设F1,F2分别是椭圆E:X^2/a^2+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B,且|AF2|,|AB|,BF2|成等差设F1,F2分别是椭圆E:X^2/a+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B两点,且|AF2|,|AB|,BF2|成等差数列1.求E
xV[OG+~v4^@zl ؊VUVJknm.N"iERnvῸ;g.^.IP5s.Μ9st~<$$e'o'=CwPksj\#xt/NzkZ޶^Yk33٢_~WiӤkmqO/gUMg2߁_AF]R4dHiPe%]^,b ˰WoL[ ((ͬXDJ!Tnb(Q[)Yj5T({6=7 ]kdȾMnʈӱ4AXIhꩴl i#sb#൪^k=[WO.ly0[ UEרI+Q#1d#:=<ʍ,k߸Fj'ˈ)6 ,Y Ai%b%P~ )o}ʹN:E5cn%J Jx̰c$$Tg'ޜm.}6𓇆5cEڶFx={zxk[~h`RKH|W=U\mZ{R)t˽[3L͑wVa*;#xolzM!9.ŗ7FAwo+Q  熚d";%떾sE

设F1,F2分别是椭圆E:X^2/a^2+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B,且|AF2|,|AB|,BF2|成等差设F1,F2分别是椭圆E:X^2/a+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B两点,且|AF2|,|AB|,BF2|成等差数列1.求E
设F1,F2分别是椭圆E:X^2/a^2+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B,且|AF2|,|AB|,BF2|成等差
设F1,F2分别是椭圆E:X^2/a+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B两点,且|AF2|,|AB|,BF2|成等差数列
1.求E的离心率
2.设点p(0,-1)满足PA=PB,求E的方程

设F1,F2分别是椭圆E:X^2/a^2+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B,且|AF2|,|AB|,BF2|成等差设F1,F2分别是椭圆E:X^2/a+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B两点,且|AF2|,|AB|,BF2|成等差数列1.求E
1.
设A(x1,y1),B(x2,y2),左焦点(-c,0)
则直线l:y=x+c
由题意得
|AF2|+|BF2|=2|AB|
∵ |AF1|+|AF2|=2a.①
|BF1|+|BF2|=2a.②
①+②得
(|AF1|+|BF1|)+(|AF2|+|BF2|)=4a
即|AB|+2|AB|=4a
|AB|=4a/3
根据焦半径公式有
|AF1|=a+ex1
|BF1|=a+ex2
∴|AB|=|AF1|+|BF1|=2a+e(x1+x2)=4a/3
∴e(x1+x2)=-2a/3
联立椭圆和直线
y=x+c
x²/a² + y²/b² =1,得
(a²+b²)x²+2a²c+a²c²-a²b²=0
把b²=a²-c²代入,得
(2a²-c²)x²+2a²cx+(2c²-a²)a²=0
∴e(x1+x2)=e[-2a²c/(2a²-c²)]=-2a/3
e(ac)/(2a²-c²)=1/3 (左右约去-2a)
e(c/a)/[2-(c/a)²]=1/3 (上下同时除以a²)
e²/(2-e²)=1/3
e=√2/2
2.
PA=PB
即(x1+1)²+y1²=(x2+1)²+y2²
(x1+1)²-(x2+1)²+y1²-y2²=0
(x1-x2)(x1+x2+2) + (y1-y2)(y1+y2)=0
(x1-x2)(x1+x2+2) + [(x1+c)-(x2+c)][(x1+c)+(x2+c)]=0 (把y=x+c代入)
(x1-x2)(x1+x2+2) + (x1-x2)(x1+x2+2c)=0
(x1-x2)[2(x1+x2)+2+2c]=0
∵x1≠x2,即x1-x2≠0
∴2(x1+x2)+2+2c=0
∴x1+x2+1+c=0

[-2a²c/(2a²-c²)]+1+c=0
∵e=c/a=√2/2,即a²=2c²
代入上式,得
c=3
∴a=3√2,a²=18,b²=9
椭圆方程为x²/18+y²/9=1

第一问另解
    (Ⅰ)根据椭圆定义及已知条件
\x09|AF2|+|AB|+|BF2|=4a,\x09\x09\x09\x09\x09\x09
\x09|AF2|+|BF2|=2|AB|,\x09\x09\x09\x09\x09\x09
\x09|AF2|2+|AB|2=|BF2|2,\x09\x09\x09\x09\x09\x09
\x09解得|AF2...

全部展开

第一问另解
    (Ⅰ)根据椭圆定义及已知条件
\x09|AF2|+|AB|+|BF2|=4a,\x09\x09\x09\x09\x09\x09
\x09|AF2|+|BF2|=2|AB|,\x09\x09\x09\x09\x09\x09
\x09|AF2|2+|AB|2=|BF2|2,\x09\x09\x09\x09\x09\x09
\x09解得|AF2|=a,|AB|=4/3a BF2|=5/3a,
\x09所以点A为短轴端点,b=c=√2/2a,离心率e=√2/2

收起

设 F1 F2,分别是椭圆E:x^2 +y^2/b^2 =1(0 设F1,F2分别是椭圆E:X^2 Y^2/b^2=1的左右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,BF2|成等差设F1,F2分别是椭圆E:X^2+ Y^2/b^2=1(0 设F1,F2分别是椭圆x^2+y^2/b^2=1(0 设F1,F2分别是椭圆x^2+y^2/b^2=1(0 设F1,F2分别是椭圆E:X^2/a^2+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B,且|AF2|,|AB|,BF2|成等差设F1,F2分别是椭圆E:X^2/a+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B两点,且|AF2|,|AB|,BF2|成等差数列1.求E 设F1,F2分别是椭圆E:X^2 Y^2/b^2=1的左右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,BF2|成等差数列1.求E的离心率2.设点p(0,-1)满足PA=PB,求E的方程题目打错了,应该是设F1,F2分别是椭圆E:X^2 /a^2+Y^2/b^ 设 F1 F2,分别是椭圆E:x^2 +y^2/b^2 =1(0﹤b﹤1)的左、右焦点,过F1 的直线设 F1 F2,分别是椭圆E:x^2 +y^2/b^2 =1(0﹤b﹤1)的左、右焦点,过F1 的直线 E相交于A、B两点,且IAF2I,IA BI,IBF2I ,成等差数列.( F1,F2分别是椭圆E:X^2 Y^2/b^2=1的左右焦点过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,BF2|成等设F1,F2分别是椭圆E:X^2 Y^2/b^2=1的左右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,BF2|成等 设f1,f2分别是椭圆EX*2+y*2/b*2=1(0 设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为B(0,根号3),F1,F2分别是椭圆的左,右焦点,离心率e=1/2直线l:y=x+1与椭圆交于M、N两点.求椭圆C的方程;求弦MN的长 设F1,F2分别是椭圆x^2+y^2=1的左,右焦点,A是该椭圆与Y轴负半轴的交点,在椭圆上求点P.使得/PF1/,/PA/,/PF2/成等差数列. 设F1,F2分别是椭圆E:X^2 Y^2/b^2=1的左右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,BF2|成等差数1.求E的离心率2.设点p(0,-1)满足PA=PB,求E的方程 设F1,F2,分别是椭圆E:(X^2/a^2)+(Y^2/b^2)=1,(a>b>o)的左右焦点,过F1斜率为1的直线I与E相交于A,B两点,且AF2,AB,BF2,成等差数列.求E的离心率; 设F1,F2分别是椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的左,右焦点,过F1斜率为1的直线l与E相交于A,B两点,且绝对值AF2,绝对值AB,绝对值BF2成等差数列.求E的离心率 (1/2)设f1,f2分别是椭圆x^2/4+y^2=1的左右焦点 设过定点m(0,2)的直线l与椭圆交于不同的两点a,b,且角...(1/2)设f1,f2分别是椭圆x^2/4+y^2=1的左右焦点 设过定点m(0,2)的直线l与椭圆交于不同的两点a,b,且角a 设椭圆C:x²/a²+y²/b²=1(a>b>0)的一个顶点与抛物线C:x²=4根号3y的交点重合,F1,F2分别是椭圆的左右焦点且离心率e=1/2,且过椭圆右焦点F2的直线l与椭圆C交于M,N两点1)求椭圆C 的方程2) 求一道数学题解题思路..急设F1,F2分别是椭圆E的左右焦点(焦点在X轴上)过F1作斜率为1的直线I与E相交于A,B两点,且AF2,AB,BF2的长成等差数列。(1)求E的离心率(2)设点P(0,-1)满足P 设F1,F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,求E的离心率