已知a、b、c是正有理数,且a+b+c=1,是否存在实数k,使不等式√4a+1 +√4b+1 +√4c+1<k恒成立?求k的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:35:01
已知a、b、c是正有理数,且a+b+c=1,是否存在实数k,使不等式√4a+1 +√4b+1 +√4c+1<k恒成立?求k的取值范围
xS]KA+=͂&C"agBEߴ$( J ìR/wַB3H0ps=3U&39]cp8s~Ho 󣅆%\&X-Dᱦa*8^5i2 &8 ܌)n

已知a、b、c是正有理数,且a+b+c=1,是否存在实数k,使不等式√4a+1 +√4b+1 +√4c+1<k恒成立?求k的取值范围
已知a、b、c是正有理数,且a+b+c=1,是否存在实数k,使不等式√4a+1 +√4b+1 +√4c+1<k恒成立?
求k的取值范围

已知a、b、c是正有理数,且a+b+c=1,是否存在实数k,使不等式√4a+1 +√4b+1 +√4c+1<k恒成立?求k的取值范围
√(4a+1) +√(4b+1)+√(4c+1)显然大于0
平方
=4a+1+4b+1+4c+1+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
=4(a+b+c)+3+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
=7+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
因为2xy<=x^2+y^2
所以2√(4a+1)*√(4b+1)<=4a+1+4b+1
2√(4a+1)*√(4c+1)<=4a+1+4c+1
2√(4b+1)*√(4c+1)<=4b+1+4c+1
所以2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)<=8(a+b+c)+6=8+6=14
所以
[√(4a+1) +√(4b+1)+√(4c+1)]^2<=7+14=21
所以√(4a+1) +√(4b+1)+√(4c+1)<=√21
所以存在,只要k>√21即可