设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:56:03
x){nF7g3?y6{]+t+Ljycɓ,{S Yٓ]@ySjkQγMOvtX>E@7#ʗs=_&H@/8#l5y1nf"lk
VT4@}n֓:5`t6%Ad;P }6,jk7wLA-pvX ->{PThfZZzF&6yv Gp
设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2的面积
设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2的面积
设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2的面积
x^2-y^2/24=1,则双曲线a=1,c=5
|F1F2|=10,
定义,||PF1|-|PF2||=2a=2
又|PF1|+|PF2|=14
故|PF1|=8,|PF2|=6
或|PF1|=6,|PF2|=8
三角形三边6,8,10,直角,故面积=6*8*0.5=24
高中数学椭圆与双曲线设F1,F2是双曲线x^2-24分之Y^2的两个焦点,p点是双曲线的一点,且3PF1=4PF2,则三角形PF1F2的面积等于————
设f1,和f2为双曲线x^2/a^2-y^2/b^2=1的两个焦点,若f1,f2,p(0,2b)是正三角形的三个顶点,则双曲线的离心率为
设F1,F2是双曲线X^2-Y^2/24=1的两个焦点,P是双曲线与椭圆X^2/49+Y^2/24=1的一个公共点,则三角形PF1F2则三角形PF1F2面积
设P为双曲线X^2-Y^2=1上的一点,F1,F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为(...设P为双曲线X^2-Y^2=1上的一点,F1,F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为(
设F1和F3为双曲线的平方/a的平方-y的平方/b的平方=1的两个焦点,若F1.F2.P(0,2b)是正三角形的三个顶点,则双设F1和F2为双曲线(x平方除以a平方)-(y平方除以b平方)(a>0,b>0)的两个焦点,若F1.F2.P(0,
设F1,F2是双曲线x^2-y^2/24=1的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则三角形PF1F2的面积等于?
设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2的面积
双曲线的题.设F1、F2分别是双曲线(x^2)-(y^2 /9)=1的左右焦点设F1、F2分别是双曲线(x^2)-(y^2 /9)=1的左右焦点,若点P在双曲线上,且PF1向量*PF2向量=0,则|PF1向量+PF2向量|=?答案是2根号10.可是我算不出.
设O为坐标原点,F1,F2是双曲线 x^2/a^2-y^2/x^2=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1
设O为坐标原点,F1,F2是双曲线 x^2/a^2-y^2/x^2=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1
设f1f2和f2为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的两焦点,若f1、f2、p(0,2b)是正三角形的三个顶点,则双曲线离心率是?
双曲线数学题1.已知双曲线的方程是16x²-9y²=144设F1,F2是双曲线的左右焦点,点P在双曲线上,且|PF1||PF2|=32求角F1PF2的大小2.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过
设p为等轴双曲线x^2-y^2=1上的一点,F1,F2是两个焦点,证明lpfl*lpf2l=lopl^2
设F1,F2,是双曲线x^2/4-y^2=1的焦点,点p在双曲线在双曲线上,且角F1DF2=90°,则点p到x轴的距离为?
关于双曲线设F1,F2为双曲线 X^2/4-Y^2=1的两个焦点,点P在双曲线上,且满足向量PF1*PF2=0(即两线垂直),则三角形F1PF2的面积是?
椭圆与双曲线题1.已知F1,F2为双曲线与椭圆X^2+4Y^2=4的公共焦点,左焦点F1到双曲线的渐近线的距离为√2.(1)求双曲线方程(2)设P是双曲线与椭圆在第一象限的交点,求cos∠F1PF2的值
设P是等轴双曲线x^2-y^2=a^2(a>0)右支上一点,F1,F2是左右焦点,若向量PF2*F1F2=0,|PF1|=6,双曲线方程?
设p是双曲线x^2-y^2/12上的一点,F1.F2是双曲线的两个焦点PF1:PF2=3:2.则三角形PF1F2的面积为多少如题哈