已知函数f(x)=cos^2ωx+2根号3cosωx+sinωx-sin^2ωx图像的两相邻对称轴的距离为兀/2.1:求ω的值2:在三角形ABC中,a,b,c分别是角A,B,C的对边,若a=√3,f(A)=1,求b+c的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 13:35:38
已知函数f(x)=cos^2ωx+2根号3cosωx+sinωx-sin^2ωx图像的两相邻对称轴的距离为兀/2.1:求ω的值2:在三角形ABC中,a,b,c分别是角A,B,C的对边,若a=√3,f(A)=1,求b+c的最大值
xTN@~z)k #eWBF1-uDP5V'HUh;w<9]DB^v曱\:~:WQdQ[љxV+~cŠ.4;6[{ ^* ;=xLqp,:`K7&0~P1q4ksqT'5&ۘrOݬ%ae <&3`Qn$u8ha_606NUYuJ;Mo& 4KZM$x?o8PU@0HQ44EyOto9w`R&}Ɯ4²LxYW(8F'asRsb̒Ĺ9lV/ҷq#kۮ)ej2\qi mmJ 2C<4. wfpf 9*@3l[O\&F v4`tefZYr_lj

已知函数f(x)=cos^2ωx+2根号3cosωx+sinωx-sin^2ωx图像的两相邻对称轴的距离为兀/2.1:求ω的值2:在三角形ABC中,a,b,c分别是角A,B,C的对边,若a=√3,f(A)=1,求b+c的最大值
已知函数f(x)=cos^2ωx+2根号3cosωx+sinωx-sin^2ωx图像的两相邻对称轴的距离为兀/2.
1:求ω的值
2:在三角形ABC中,a,b,c分别是角A,B,C的对边,若a=√3,f(A)=1,求b+c的最大值

已知函数f(x)=cos^2ωx+2根号3cosωx+sinωx-sin^2ωx图像的两相邻对称轴的距离为兀/2.1:求ω的值2:在三角形ABC中,a,b,c分别是角A,B,C的对边,若a=√3,f(A)=1,求b+c的最大值
已知函数f(x)=cos^2ωx+2√3cosωx+sinωx-sin^2ωx图像的两相邻对称轴的距离为π/2
1:求ω的值
2:在三角形ABC中,a,b,c分别是角A,B,C的对边,若a=√3,f(A)=1,求b+c的最大值
(1)解析:∵函数f(x)=cos^2ωx+2√3cosωxsinωx-sin^2ωx
=cos2ωx+√3sin2ωx=2sin(2ωx+π/6)
∵图像的两相邻对称轴的距离为π/2
∴T/2=π/2==>T=π==>2ω=2==>ω=1
∴f(x) =2sin(2x+π/6)
(2)解析:∵在三角形ABC中,a=√3,f(A)=1
f(A)=2sin(2A+π/6)=1==>2A+π/6=5π/6==>A=π/3
由余弦定理得a^2=b^2+c^2-2bccosA=b^2+c^2-2bc=(b+c)^2-3bc=3
∴(b+c)=√3*√(bc+1)
∵b>0,c>0
∵b+c>=2√(bc)
当b=c时bc取最大的值,bc=(b+c)^2/4
∴(b+c)^2-3bc=(b+c)^2-3(b+c)^2/4=3
(b+c)^2/4=3==>b+c=2√3
∴b+c的最大值为2√3